Level Plus® Magnetostrictive Liquid-Level Transmitters with Temposonics® Technology ## **OPERATION AND INSTALLATION MANUAL** M-Series Model MG Digital Transmitter #### **UNITED STATES** #### **GENERAL:** Tel: +1-919-677-0100 Fax: +1-919-677-2343 E-mail: info.us@mts.com http://www.mtssensors.com #### **MAILING AND SHIPPING ADDRESS:** MTS Systems Corporation Sensors Division 3001 Sheldon Drive Cary, North Carolina, 27513, USA #### **CUSTOMER SERVICE:** Tel: +1-800-457-6620 Fax: +1-800-498-4442 E-mail: orders@mts.com #### **TECHNICAL SUPPORT AND APPLICATIONS:** 24 Hour Emergency Technical Support Tel: +1-800-633-7609 e-mail: levelplus@mts.com #### **OFFICE HOURS (EST):** Monday - Thursday: 8:00 a.m. to 5:00 p.m. Friday: 8:00 a.m. to 4:00 p.m. #### **REMITTANCE ADDRESS:** MTS Systems Corporation Sensors Division NW 5872 P.O. Box 1450 Minneapolis, MN, 55486-5872 #### **QUOTE AND CONTRACT TERMS & CONDITIONS:** The parties expressly agree that the purchase and use of Material and/ or Services from MTS Sensors Division are subject to MTS' Terms and Conditions, in effect as of the date of this document, which are located at http://www.mtssensors.com/fileadmin/media/pdfs/Terms_and_Conditions.pdf and are incorporated by reference into this and any ensuing contract. Printed Terms and Conditions can be provided upon request by emailing info.us@mtssensors.com or if you prefer, go to http://www.mtssensors.com/index and click the Quote/Contract Terms and Conditions link at the bottom of the page to download the PDF. #### **GERMANY** #### **GENERAL:** Tel.:+49-2351-9587-0 Fax:+49-2351-56491 e-mail: info.de@mtssen e-mail: info.de@mtssensors.com http://www.mtssensor.de #### **MAILING AND SHIPPING ADDRESS:** MTS Sensor Technologie, GmbH & Co. KG Auf dem Schüffel 9 D - 58513 Lüdenscheid, Germany ## TECHNICAL SUPPORT AND APPLICATIONS: Tel.:+49-2351-9587-0 e-mail: info.de@mtssensors.com http://www.mtssensor.de ## **JAPAN** #### **GENERAL:** Tel.: +81-42-775-3838 Fax: +81-42-775-5516 e-mail: info.jp@mtssensors.com http://www.mtssensor.co.jp ### **MAILING AND SHIPPING ADDRESS:** MTS Sensors Technology Corporation 737 Aihara-cho, Machida-shi Tokyo 194-0211, Japan #### **TECHNICAL SUPPORT AND APPLICATIONS:** Tel.: +81-42-775-3838 Fax: +81-42-775-5512 #### **Reference Information** #### Notices used in this manual This manual contains notices to highlight specific information as follows: #### Notes: These notices provide important tips, guidance, or advice, #### Important: These notices provide information that might help you avoid inconvenient or problem situations. #### Attention: These notices indicate possible damage to programs, devices, or data and is placed just before the instruction or situation in which damage could occur. #### Caution These notices indicate situations that can be potentially hazardous to you. A Caution notice is placed just before a description of a potentially hazardous procedure, step, or situation. #### Related publications The following publications are listed below by part number followed by description and are available in Adobe Acrobat Portable Document Format (PDF) at http://www.mtssensors.com/ 550784 - Product Specification, Level Plus M-Series Digital 551103 - Level Plus Accessories Catalog 551104 - Component Replacement Guide 550904 - Application Datasheet Rigid 550905 - Application Datasheet Sanitary 550906 - Application Datasheet 7/8" Flex 551410 - Brief Operation Manual for Safe Use 550791 (PT) - Operation and Installation Manual, Model MG in Portuguese 550791 (KOR) - Operation and Installation Manual, Model MG in Korean For information about safe work procedures, refer to the following documentation: National Electric Code ANSI/NFPA 70 CSA C22.1 Canadian Electrical Code #### How this manual is organized #### Getting information, help, and service You can get the latest ordering information and software updates by visiting www.mtssensors.com website General contact information, shipping and office hours are available on page i. [&]quot;Introduction", provides an overview of the manual. [&]quot;Terms and Definitions", provides definitions of terms used in this manual. [&]quot;Product Overview", gives an overall product description for the Level Plus liquid-level transmitter, its specifications, use, output, and electronics. [&]quot;Installation and Mounting", provides detailed installation and mounting information. [&]quot;Electrical Connections and Wiring Procedures", provides engineering specifications and wiring diagrams to assist in the installation process. [&]quot;Maintenance and Field Service", provides guidelines for general maintenance and procedures for replacing the Model MG electronic module or level transmitter. [&]quot;Troubleshooting", provides a list of symptoms, their possible cause and the action to be taken when troubleshooting the transmitter. [&]quot;Quick Start-Up Guide, (Modbus and DDA)", provides a list of steps to quickly set up your Modbus or DDA output. [&]quot;Modbus Interface", provides information to communicate via the Modbus RTU protocol. [&]quot;Foundation™ fieldbus Interface", provides information to communicate via the Foundation™ fieldbus protocol. [&]quot;DDA Protocol", provides the DDA hardware and software environment overviews. [&]quot;Agency Information" provides comprehensive listings of agency approvals and standards, installation drawings, labels and applicable protocols. #### **Contact information** | Contact information | | |--|------| | General | i | | Mailing and shipping address | i | | Customer service | | | Technical support and applications | | | Office hours | i | | Remittance address | | | Quote and contract terms and conditions | i | | Reference information | | | | | | Notices used in this manual | | | Related publications | | | How this manual is organized | | | Getting information, help, and service | ii | | Introduction | | | Introduction | 1 | | Public website support portal | | | Terms and Definitions | | | Terms and definitions reference | 2 | | Model MG product overview | | | Product overview | 4 | | Industries | | | Applications | | | Features | 4 | | Components | | | Housings | | | Outer pipe configurations | | | Floats | | | Internal electronics | | | Accessories | | | Theory of operation | | | Warranty | | | Model number identification | | | FM/CSA | | | ATEX/IECEx | | | Product specifications | | | Model MG transmitter installation and mounting | | | Installation and mounting | . 12 | | Storage | | | Stilling wells and guide poles | | | Installation | | | Rigid probe | | | Flexible probe | | | Mounting | | | Threaded flange mounting | | | Welded flange mounting | | | Sanitary Tri-Clamp mounting | 15 | | Electrical connections and wiring | | | Electrical connections and wiring procedures | | | Safety recommendations for installation | | | Point-to-point | | | Bus with spurs | | | | | | Tree | 16 | |---|--| | Daisy chain | | | Recommended cable types | | | Cable recommendation for Modbus and DDA
Cable recommendation for FOUNDATION™ fieldbus | | | Electrical conduit installation | | | Grounding | | | Safety barriers | . 18 | | | | | Maintenance and field service | | | Maintenance and field service | | | requirements | | | Float maintenance | | | Field service | | | Service / RMA policy | 19 | | Troubleshooting | | | Troubleshooting procedures | . 20 | | Software installation and user interface references | | | Quick start-up guide (Modbus and DDA) | | | Before you begin | | | Quick start-up procedure | 21 | | Modbus user interface | | | Modbus interface | | | Modbus implementation | | | Modbus function codes | ८८ | | Device Modbus register mans | 23 | | Device Modbus register maps
Special/Advanced diagnostic register maps | | | Device Modbus register maps | 27 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references | 27
27
27 | | Special/Advanced diagnostic register maps
How units are used | 27
27
27 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software | 27
27
27
31 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG | 27
27
27
31
32 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter | 27
27
27
31
32 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab |
27
27
27
31
32 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab | 27
27
27
31
32 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface | 27
27
31
32
33
35 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface | 27
27
31
32
33
35 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description | 27
27
31
32
33
35 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block | 27
27
31
32
33
35 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks | 27
27
31
32
33
35
35 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block | 27
27
31
32
33
35
37
37
40
41 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS Setup and calibration | 27
27
31
32
33
35
37
37
40
41
41 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS | 27
27
31
32
33
35
37
37
40
41
41 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS Setup and calibration | 27
27
31
32
33
35
37
37
40
41
41 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS Setup and calibration FOUNDATION™ fieldbus handheld menu tree | 27
27
27
31
32
33
35
37
37
37
41
41 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS Setup and calibration FOUNDATION™ fieldbus handheld menu tree DDA user interface | 27
27
31
32
33
35
37
40
41
41 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS Setup and calibration FOUNDATION™ fieldbus handheld menu tree DDA user interface DDA interface Hardware and software environments DDA command decoder examples | 27
27
27
31
32
33
35
37
37
40
41
41
42 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS Setup and calibration FOUNDATION™ fieldbus handheld menu tree DDA user interface DDA interface Hardware and software environments DDA command decoder examples DDA/Host computer communication protocol | 27
27
27
31
32
33
35
37
37
40
41
41
42 | | Special/Advanced diagnostic register maps How units are used Modbus register Map note references Formulas used in volume calculation Installing the M-Series digital setup software Setting up and calibrating the Model MG digital transmitter Data from Device tab Volume Calculations tab FOUNDATION™ fieldbus user interface FOUNDATION™ fieldbus interface Device description Transducer block Analog input function blocks Resource block LAS/Back-up LAS Setup and calibration FOUNDATION™ fieldbus handheld menu tree DDA user interface DDA interface Hardware and software environments DDA command decoder examples | 27
27
27
31
32
33
35
37
37
40
41
41
42 | ## **Table of Contents** ## **DDA** user interface (Continued) | DDA command definitions | | |---|----| | (includes protocol information) | 47 | | Special control commands | | | Level commands | 48 | | Temperature commands | 48 | | Multiple output commands | 49 | | High-level memory read commands | 50 | | High-level memory writing commands | 51 | | Diagnostic/Special command set | 53 | | DDA Error codes | 53 | | M-Series digital setup software installation, setup and | | | calibration | 54 | | Data from device tab | 54 | ## **Agency Information** | Agency approvals | 56 | |---|-----| | FM/CSA | | | ATEX | | | CCoE | | | KC | | | IECEx | | | INMETRO | 57 | | NEPSI | | | IP/NEMA Rating | | | Hazardous area installation | | | FM/CSA for Modbus and DDA | | | Installation drawings | 59 | | Notes | | | Wiring connections | | | ATEX and IECEx for Modbus and DDA | 62 | | Installation drawings | 63 | | Notes | 64 | | Wiring connections | 65 | | Special Condition for Use | 67 | | FM/CSA for FOUNDATION™ fieldbus | | | Installation drawing | | | Notes | | | Wiring connections | 69 | | ATEX and IECEx for FOUNDATION™ fieldbus | 72 | | Installation drawing | 73 | | Notes | 74 | | Wiring connections | 74 | | Special Condition for Use | 75 | | ATEX certificates | 76 | | CSA certificate | 82 | | FM certificate | 84 | | NEPSI certificates | 88 | | ECEx certificates | | | EC Declaration of Conformity | | | CCoE certificates | 99 | | ARS Tyne Annroyal | 101 | #### Introduction MTS is recognized as the pioneer, innovator and leader in magnetostrictive sensing. The new Level Plus® M-Series transmitter design represents a continuation of our on-going effort to provide effective, innovative and reliable products to the Liquid Level marketplace. This manual will provide the following information about the Level Plus Model MG digital transmitter: - · Terms and definitions - Product overview - Installation and mounting - · Electrical connections and wiring procedures - · Maintenance and field service - Troubleshooting - Quick start-up guide (Modbus and DDA) - · Modbus interface - FOUNDATION™ fieldbus interface - DDA interface - Product certification
Public website support portal Visit our support portal at http://www.mtssensors.com for: - · Building Level Plus M-Series model numbers - · Latest documentation releases - · Detailed ordering information - · Latest software updates #### **Terms and Definitions** #### Terms and definitions reference **6A Heavy Oils** – 'Generalized Crude Oils', Correction of Volume to 60 °F against API Gravity. **6B Light Oils** – 'Generalized Products', Correction of Volume to 60 °F against API Gravity. **6C Chemical** – 'Volume Correction Factors (VCF)' for individual and special applications, volume correction to 60 °F against thermal expansion coefficients. **6C Mod** – An adjustable temperature reference for defining *VCF*. #### A **API Gravity** – The measure of how heavy or light a petroleum liquid is compared to water. Allowable values are 0 to 100 degrees *API* for (6A) and 0 to 85 degrees *API for* (6B). #### D **DDA** – 'Direct Digital Access' – The proprietary digital protocol developed by MTS for use in intrinsically safe areas. **Density** – Mass divided by the volume of an object at a specific temperature. The density value should be entered as lb / cu. ft.. #### Ē **Explosion-proof** — Type of protection based on enclosure in which the parts which can ignite an explosive gas atmosphere are placed within and which can withstand the pressure developed during an internal explosion of an explosive mixture, and which prevents the transmission of the explosion to the explosive gas atmosphere surrounding the enclosure. #### F **Flameproof** – Type of protection based on enclosure in which the parts which can ignite an explosive gas atmosphere are placed within and which can withstand the pressure developed during an internal explosion of an explosive mixture, and which prevents the transmission of the explosion to the explosive gas atmosphere surrounding the enclosure. **FOUNDATION™ fieldbus** — An all digital, serial, two-way communications system that serves as the base-level network in a plant or factory automation environment. Developed and administered by the fieldbus FOUNDATION™. #### G **GOVI** – 'Gross Observed Volume of the Interface' – The total volume of the tank occupied by the interface liquid. The GOVI is only given when measuring two liquids and is calculated by subtracting the volume of the product from the total volume of liquid in the tank (GOVT - GOVP). **GOVP** – 'Gross Observed Volume of the Product' – The total volume of the tank occupied by the product liquid. When measuring only one liquid, it is also the total volume of liquid in the tank *(GOVT)*. When measuring two liquids it is the total volume of liquid in the tank minus the volume of the interface liquid *(GOVT – GOVI)*. **GOVT** – 'Total Gross Observed Volume' – The total volume of liquid in the tank. When measuring only one liquid it is equal to the volume of the product (*GOVP*). When measuring two liquids it is equal to the volume of the product and interface liquids (*GOVP* + *GOVI*). **GOVU** – 'Gross Observed Volume Ullage' – the difference in volume between the working capacity of a tank and the total volume in the tank (Working Capacity – *GOVT*). #### ı **Interface** – *Noun*; The measurement of the level of one liquid when that liquid is below another liquid. **Interface** – Adj.; The Software Graphical User Interface (GUI) that allows the user to access software protocols (DDA, MODBUS). **Intrinsic safety** – 'Intrinsically safe' - Type of protection based on the restriction of electrical energy within apparatus of interconnecting wiring exposed to potentially explosive atmosphere to a level below that which can cause ignition by either sparking or heating effects. #### M **Mass** – The property of a body that causes it to have weight in a gravitational field, calculated by density at the reference temperature multiplied by the volume correction factor (*Density* * *VCF*). **MODBUS** - A *serial communications protocol* published by Modicon in 1979 for use with its programmable logic controllers (PLCs). It has become a de facto standard communications protocol in industry, and is now the most commonly available means of connecting industrial electronic devices. #### N **NEMA Type 4X** – A product *Enclosure* intended for indoor or outdoor use primarily to provide a degree of protection against corrosion, windblown dust and rain, splashing water, and hose-directed water; and to be undamaged by the formation of ice on the enclosure. They are not intended to provide protection against conditions such as internal condensation or internal icing. $\mathbf{NPT} - U.S.$ standard defining tapered pipe threads used to join pipes and fittings. **NSVP** – 'Net Standard Volume of the Product' – The temperature corrected volume for the product liquid in the tank, requires the transmitter to be ordered with temperature measurement capabilities. The *NSVP* is calculated by multiplying the volume of the product liquid by a volume correction factor based on temperature *(GOVP * VCF)*. #### ŀ **Reference Temperature** – The *temperature* at which the density measurement is given, the allowable values are 32 °F to 150 °F. #### S **Specific Gravity** – The *density ratio* of a liquid to the density of water at the same conditions. **Sphere Radius** – The *internal radius* of the sphere that contains the liquid, the value is used to calculate the volume along with the *Sphere Offset*. **Sphere Offset** – An *offset value* that accounts for additional volume in a sphere from non-uniform sphere geometry, the value is used to calculate the volume along with the *Sphere Radius*. **Strap Table** – A *table of measurement* correlating the height of a vessel to the volume that is contained at that height. The transmitter can contain up to 100 points. #### T **TEC** – 'Thermal Expansion Coefficient' - a value correlating the change in temperature for an object with the change in its volume. Allowable values are 270.0 to 930.0. TEC units are in 10 E-6/Deg F. **Temperature Correction Method** – One of five *product correction methods* used to correct the product volume in the tank due to changes in temperature from 60 °F including (6A, 6B, 6C, 6C Mod, and Custom Table. #### V **Volume Calculation Mode** – One of two methods use to calculate volume measurements from level measurements, including *Sphere* and *Strap Table*. **VCF** – 'Volume Correction Factor' – A table of measurements correlating temperature points with correction factors for the liquids expansion/contraction. The transmitter can contain up to 50 points. #### W **Working Capacity** – *The maximum volume of liquid* that the user desires for their vessel to hold, typically 80% of the vessels maximum volume before overfill. #### **Product Overview** #### **Product overview** The Level Plus Model MG Liquid-Level transmitter is a continuous multi-functional magnetostrictive transmitter that provides product level, interface level, and temperature to the user via Modbus, DDA, or FOUNDATION™ fieldbus output. Magnetostrictive technology is one of the most accurate and repeatable level technologies available to date. MTS is the inventor and purveyor of magnetostrictive technology and has been serving the level industry for over 35 years. #### **INDUSTRIES** - Petroleum - Liquid petroleum gas - Pharmaceutical - Food & beverage - Chemical - Wastewater - Mining #### **APPLICATIONS** - Tank farms - Terminals - Bullet tanks - Spheres - Separator tanks - Battery tanks - **■** Storage tanks #### **FEATURES** - 3-in-1 measurement - Product level - Interface level - Temperature level - 100 Point strap table - No scheduled maintenance or recalibration - API temperature corrected volumes - Non-linearity ±1 mm - Field repairable ## **Components** The Level Plus Model MG liquid level transmitter consists of four main components; a housing, outer pipe, float, and electronics. Varying the components of the transmitter allows the transmitter to be customized to almost any application. #### **HOUSINGS** Level Plus Model MG transmitters are available in three housing configurations; NEMA Type 4X 316L stainless steel, explosion-proof single and dual-cavity housings as shown below: NEMA Type 4X 316L stainless-steel housing Single cavity explosion-proof housing **Dual cavity explosion-proof housing** #### **OUTER PIPE CONFIGURATIONS** The outer pipe is constructed of a variety of configurations, shown below. Contact factory for other materials (such as Hastelloy C or Teflon). Figure 1 5/8 in. diameter rigid outer pipe of 316L stainless steel **Figure 2** 5/8 in. diameter rigid outer pipe of polished 316L stainless steel with sanitary process connection and end plug Figure 3 7/8 in. diameter flexible pipe of 316L stainless steel #### **Product Overview. Components** #### **FLOATS** Model MG transmitters offer numerous floats for different applications such as stainless steel, 3-A sanitary, hastelloy, Teflon, and Nitrophyl for both product level and interface level. To be able to accurately detect the interface level there needs to be a difference of at least 0.05 in specific gravities between the product and interface liquids. For detailed information about floats, refer to the 'Accessories Catalog', MTS part number 551103. For assistance with selecting a specific float for your application, please contact *Technical Support* with the following information: - · Specific gravity of liquid(s) being measured - Process temperature Process Opening Size - · Vessel pressure For ATEX, IECEx, and CCoE approvals, Model MG transmitters should be used with a float having an offset weight and made of stainless steel or Hastelloy C. This allows the float to stay in contact with the pipe to prevent the buildup of an electrostatic charge. For detailed information about floats, refer to the 'Accessories Catalog', MTS part number 551103. Non-metalic floats with a projected surface area of less than 5,000 mm² should only be used in
Zone 0, Gas group IIA such as float part numbers 201643-2, 201649-2, 201650-2, 201109, 251115 and 251116. All other non-metallic floats offered by MTS such as, 251939, 251119, 251120 and 252999, should not be used in a hazardous area application. ## **INTERNAL ELECTRONICS** All transmitters come with two electronic components of a sensing element and a board set. All sensing elements up to 300 inches (7620 mm) are rigid and greater lengths have flexible sensing elements. Flexible sensing elements are only available under 300 inches (7620 mm) as special orders. The board set consists of a top board and bottom board that differ depending on the output. A temperature sensing function is optional with the Model MG transmitter. The temperature sensing device is a digital thermometer (DT) mounted inside the transmitter's pipe assembly. The DT is capable of an inherent accuracy of \pm 0.5 °F (0.28 °C). #### **ACCESSORIES** MTS also offers a series of displays, housings, converters, and other accessories, please refer to the 'Accessories Catalog', MTS part number 551103. ## Product Overview ## Theory of operation Magnetostrictive M-Series transmitters precisely sense the position of an external float by applying an interrogation pulse to a waveguide medium. This current pulse causes a magnetic field to instantly surround the waveguide. The magnet installed within the float also creates a magnetic field. Where the magnetic fields from the waveguide and float intersect, a rotational force is created (waveguide twist). This, in turn, creates a torsional-sonic pulse that travels along the waveguide as shown in *Figure 4*. The head of the transmitter houses the sensing circuit, which detects the torsional-sonic pulse and converts it to an electrical pulse. The distance from a reference point to the float is determined by measuring the time interval between the initiating current pulse and the return pulse and precisely knowing the speed of these pulses. The time interval is converted into a level measurement. #### Figure 4 Theory of operation #### **Accuracy** For magnetostrictive transmitters inherent accuracy is measured in terms of non-linearity. Non-linearity is a measurement of any imperfections in the waveguide that are reflected in the linearity of the transmitter's output. MTS tolerances reflect a maximum non- linearity of ± 1 mm (0.039 in.). MTS is able to achieve such strict tolerances by manufacturing all of its own waveguide from a proprietary alloy and testing 100% of all transmitters before shipping. ## Warranty #### Important: Contact Technical Support or Customer Service for assistance if you suspect that the transmitter is not working correctly. Technical support can assist you with troubleshooting, part replacement, and *Returned Material Authorization* (RMA) information if required. All M-Series transmitters come with a two year limited warranty from the factory shipment date. A *Return Materials Authorization* (RMA) number is required and must accompany any transmitter returns. Any unit that was used in a process must be properly cleaned in accordance with OSHA standards, before it is returned to the factory. A *Material Safety Data Sheet* (MSDS) must also accompany the transmitter that was used in any process. ## **Product Overview** ## Model number identification for FM and CSA approvals | M = Magnetostricitive transmitter | | | - TRANSMITTER MODEL | | | | . = | M | 1 | |--|---|---|--|--------|-------|--|-----|-------|------| | G = Digital output level transmitter AERNOY APPROVAL A PM and CSA OUTPUT M M Modus RTU data format D = MTS DDA F = COUNDATION* fieldbus (XP only) HOUSING TYPE AND A MEMA Type 4X, 316, stainless stell with NPT and internal crammal block (Intrinsically safe) Terminal blocks (Intrinsically safe only) B = Simple cavity (explosion-proof and intrinsically safe) L = MEMA Type 4X, 316, with 6-pin connector (Intrinsically safe only) B = Simple cavity (explosion-proof and intrinsically safe) L = MEMA Type 4X, 316, with 6-pin connector (Intrinsically safe only) TRANSMITTER PREMOSE F = ELECTRONICS MOUNTING 1 = Integral electronics TRANSMITTER PREMOSE F = Sanitary, drain-in-place, no hole, DM M = Resubte whothorn fixing hook (stainless steel only) TRANSMITTER PREMOSE F = Sanitary, drain-in-place, DP N = Resubte whothorn fixing magnet (stainless steel only) MATERIALS OF CONSTRUCTION (WETTED PARTS) (Note: contact factory for other materials) A = Tetlon PROCESS CONNECTION TYPE PROCESS CONNECTION TYPE PROCESS CONNECTION TYPE PROCESS CONNECTION TYPE PROCESS CONNECTION SZE A = 34in, (MPT for 7s in, nose) F = Sanitary, adjustable fitting R = Sonitary, adjustable fitting R = Sonitary for 7s in, nose) C = 15 in. EMPERATURE (DISTAL THERMOMETERS) U = USC Customary (Inches) Encode length in inches if ordering in US Customary (DXCXXX in.) I = Time transmitter: Side mm (20 in.) to 8096 mm (240 in.) F = Reposite transmitter: Side mm (120 in.) to 8096 mm (240 in.) F = Reposite transmitter: Side mm (120 in.) to 8096 mm (240 in.) F = Reposite transmitter: Side mm (120 in.) to 8096 mm (240 in.) F = Sonitary (Inches) Encode length in indimenters if using metric U = USC Customary (Inches) Encode length in inches if ordering in Uson affectin | M | = | | | | | | | | | A ERIENT APPROVAL A FM and CSA B CS | _ | | - TYPE - | | | | = | G | 2 | | A PM and CSA 3 = 3-A OUTPUT MIS DDA Mis DDA Mis DDA Housing Type Taking Type Housing Taking Type Housing Taking Type Housing Taking Type Housing Ho | G | = | Digital output level transmitter | | | | | | | | UTPUT M | | | - AGENCY APPROVAL | | | | = | | 3 | | M = Modbus RTU data format D = MIS DOA HIS DOA HOUSING TYPE Foruparanow-fieldbus (XP only) HOUSING TYPE Single cavity (explosion-proof and intrinsically safe) B = Single cavity (explosion-proof and intrinsically safe) L = NEMA Type 4X,
316L with 6-pin connector (intrinsically safe only) ELECTRONICS MOUNTING = CECTRONICS MOUNTING L = NEMA Type 4X, 316L with 6-pin connector (intrinsically safe only) ELECTRONICS MOUNTING = PECTRONICS | A | = | | 3 | = | 3-A | | ı | | | D | | | | | | | = | | 4 | | F = FOUNDATION** fieldbus (XP only) HOUSING TYPE 3 | M | = | | | | | | | | | HOUSING TYPE ### HOUSING HITMINSCAID, Safe only) | D | | | | | | | | | | NEMA Type 4X, 316L clainless steel with NPT and internal torminal blooks (intrinsically safe only) L | F | = | , -, | | | | | | 1 | | ### Etrminal blocks (Intrinsically safe only) ### ELECTRONICS MOUNTING ELECTRONICS MOUNTING | 2 | | | | | Dual cavity (avalogion-proof and intringically cafe) | = | | 5 | | ELECTRONICS MOUNTING 1 = Integral electronics TRANSMITTER PIPE/ROSE B = Industrial end-plug with stop collar F = Sanitary, drain-in-place, DN C = Sanitary, drain-in-place, DP N = Flexible w/bottom fixing weight (stainless steel only) D = Sanitary, drain-in-place, DP N = Flexible w/bottom fixing weight (stainless steel only) MATERIALS OF CONSTRUCTION (WETTED PARTS) (Note: contact factory for other materials) MATERIALS OF CONSTRUCTION (WETTED PARTS) (Note: contact factory for other materials) PROCESS CONNECTION TYPE 1 = NPT, adjustable fitting 6 = 150 lbs. welded RF flange 7 = 300 lbs. welded RF flange 5 = Sanitary, welded 7 = 300 lbs. welded RF flange 5 = Sanitary, welded 7 = 300 lbs. welded RF flange 5 = Sanitary, welded 7 = 300 lbs. welded RF flange 5 = Sanitary, welded 7 = 300 lbs. welded RF flange 8 = 600 lbs. welded RF flange 9 PROCESS CONNECTION SIZE PROCESS CONNECTION SIZE PROCESS CONNECTION SIZE PROCESS CONNECTION SIZE 1 in (NPT for 5% in, pipe) F = 3 in. C = 1½ in. PROCESS CONNECTION SIZE PROCESS CONNECTION SIZE 1 in (NPT for 5% in, bose) G = 4 in. TEMPERATURE (DIGITAL THERMOMETERS) TEMPERATURE (DIGITAL THERMOMETERS) 0 = None 5 = Five DTs, evenly spaced as API 1 = One DT, fixed position § 6 = Five DTs, customer defined position # K = Twelve DTs, sustomer defined position # K = Twelve DTs, sustomer defined position # Notes: # If this DT option is selected, option *18 F must also be selected. § One DT, customer defined position # In Twelve DTs, sustomer (XXXXXX in.) 1 = Twelve DTs, sustomer (XXXXX in.) 1 = Tellon transmitter: 508 mm (20 | J | _ | | • | - | bual cavity (explosion-proof and intrinsically safe) | | | | | ELECTRONICS MOUNTING Integral electronics | В | = | Single cavity (explosion-proof and intrinsically safe) | | = | | | | | | Integral electronics TRANSMITTER PIDE-MOSE | | | - ELECTRONICS MOUNTING | | | (Intrinsically safe only) | | | 6 | | TRANSMITTER PIPE/HOSE B = Industrial end-plug with stop collar F = Sanitary, drain-in-place, no hole, DN C = Sanitary, T-har, TB M = Flexible w/bottom fixing hook (stainless steel only) D = Sanitary, clean-in-place, DP N = Flexible w/bottom fixing weight (stainless steel only) MATERIALS OF CONSTRUCTION (WETTED PARTS) (Note: contact tactory for other materials) 1 = 316L stainless steel 3 = Hastelloy C C = CRN Approved 4 = Sanitary, velada 316L stainless steel Ra 15 PROCESS CONNECTION TYPE 1 = NPT, adjustable fitting 6 = 150 lbs. welded RF flange 7 = 300 lbs. welded RF flange 8 = 600 lbs. welded RF flange PROCESS CONNECTION SIZE A = 34 in. (NPT for 5% in. pipe) F = 3 in. (NPT for 5% in. pipe) F = 3 in. (NPT for 7% in. hose) G = 4 in. TEMPERATURE (DIGITAL THERMOMETERS) 0 = None 5 = Five DTs, evenly spaced as API 1 = One DT, fixed position § 6 = Five DTs, customer defined position # Notes: H If this DT option is selected, option *10 E* i must also be selected. § One DT, customer defined position # Notes: H If this DT option is selected, option *10 E* i must also be selected. § One DT at 23 mm (8 in.) from end of transmitter; the order length is less than 9144 mm (360 in.). If the length greater, One DT at 9144 mm (366 in.) mm the end of the transmitter. UNIT OF MEASUREMENT M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) E Regid or Sanitary transmitter: 508 mm (20 in.) to 6096 mm (240 in.) S = Clandard product E = Engineering special (not affecting agency controlled parts or features) | 1 | = | | | | | | |] 0 | | Industrial end-plug with stop collar | | | | | | | . = | | 7 | | C = Sanitary, T-bar, TB | В | = | | F | = | Sanitary, drain-in-place, no hole, DN | | | | | E = Sanitary, clean-in-place, CP P = Flexible w/bottom fixing magnet (stainless steel only) MATERIALS OF CONSTRUCTION (WETTED PARTS) (Note: contact factory for other materials) = 316L stainless steel Ra 15 A = Teffon PROCESS CONNECTION TYPE 1 = NPT, adjustable fitting 6 = 150 lbs. welded RF flange PROCESS CONNECTION SIZE 7 = 300 lbs. welded RF flange PROCESS CONNECTION SIZE 8 = 6000 lbs. welded RF flange PROCESS CONNECTION SIZE 8 = 600 lbs. | C | = | | M | | - | | | | | MATERIALS OF CONSTRUCTION (WETTED PARTS) (Note: contact factory for other materials) = 316. Stainless steel R 3 = Hastelloy C | D | = | Sanitary, drain-in-place, DP | N | = | Flexible w/bottom fixing weight (stainless steel only) | | | | | 1 = 316L stainless steel 3 = Hastelloy C C = CRN Approved 2 = Electropolished 316L stainless steel Ra 15 A = Teflon PROCESS CONNECTION TYPE 1 = NPT, adjustable fitting 6 = 150 lbs. welded RF flange 4 = Sanitary, welded 7 = 300 lbs. welded RF flange 5 = Sanitary, welded 7 = 300 lbs. welded RF flange PROCESS CONNECTION SIZE A = ¾ in. (NPT for ¾ in. pipe) F = 3 in. B = 1 in. (NPT for ¾ in. hose) G = 4 in. C = 1½ in. TEMPERATURE (DIGITAL THERMOMETERS) 0 = None 5 = Five DTs, evenly spaced as API 1 = One DT, fixed position § 6 = Five DTs, customer defined position # K = Twelve DTs, customer defined position # Notes: ### If this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the and of the transmitter. M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 6996 mm (240 in.) S = Standard product E = Engineering special (not affecting agency controlled parts or features) | Ε | = | Sanitary, clean-in-place, CP | Р | = | Flexible w/bottom fixing magnet (stainless steel only) | | | | | 1 = 316L stainless steel 3 = Hastelloy C C = CRN Approved 2 = Electropolished 316L stainless steel Ra 15 A = Teflon PROCESS CONNECTION TYPE 1 = NPT, adjustable fitting 6 = 150 lbs. welded RF flange 4 = Sanitary, welded 7 = 300 lbs. welded RF flange 5 = Sanitary, welded 7 = 300 lbs. welded RF flange PROCESS CONNECTION SIZE A = ¾ in. (NPT for ¾ in. pipe) F = 3 in. B = 1 in. (NPT for ¾ in. hose) G = 4 in. C = 1½ in. TEMPERATURE (DIGITAL THERMOMETERS) 0 = None 5 = Five DTs, evenly spaced as API 1 = One DT, fixed position § 6 = Five DTs, customer defined position # K = Twelve DTs, customer defined position # Notes: ### If this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the and of the transmitter. M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 6996 mm (240 in.) S = Standard product E = Engineering special (not affecting agency controlled parts or features) | | | MATERIALS OF CONSTRUCTION (WETTED PARTS) (Note: contact | ct fac | tory | for other materials) — | = | | 8 | | PROCESS CONNECTION TYPE 1 = NPT, adjustable fitting 4 = Sanitary, welded 5 = Sanitary, welded 7 = 300 lbs. welded RF flange 5 = Sanitary, adjustable fitting 8 = 600 lbs. welded RF flange PROCESS CONNECTION SIZE A = ¾ in. (NPT for ¾ in. pipe) F = 3 in. C = 1½ in. D = 2 in. D = 6 in. E = 2½ in. TEMPERATURE (DIGITAL THERMOMETERS) O = None 5 = Five DTs, evenly spaced as API 1 = One DT, fixed position § 6 = Five DTs, customer defined position # K = Twelve DTs, customer defined position # Notes: # If this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the end of the transmitter. UNIT OF MEASUREMENT M Editio (millimeters) Encode
length in millimeters if using metric (XXXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters Model MG Digital Transmitter V | 1 | = | | | | | | | | | 1 = NPT, adjustable fitting 4 = Sanitary, welded 5 = 300 lbs. welded RF flange PROCESS CONNECTION SIZE PROCESS CONNECTION SIZE 8 = 600 lbs. welded RF flange 9 = 1 in. (NPT for % in. pipe) 8 = 1 in. (NPT for % in. pipe) 8 = 1 in. (NPT for % in. pipe) 9 = 2 in. 10 = 2½ in. 10 = 2½ in. 11 = One DT, fixed position § 11 = One DT, customer defined position # 12 = One DT, customer defined position # 13 = Twelve DTs, customer defined position # 14 = Twelve DTs, customer defined position # 15 = Twelve DTs, customer defined position # 16 = Twelve DTs, customer defined position # 17 = Twelve DTs, customer defined position # 18 = Twelve DTs, customer defined position # 19 = One DT, customer defined position # 10 = Notes: 11 # If this DT option is selected, option '18 E' must also be selected. 10 * One DT at 914 mm (36 in.) If the length greater, One | 2 | = | Electropolished 316L stainless steel Ra 15 | A | = | Teflon | | | | | 4 = Sanitary, welded 7 = 300 lbs. welded RF flange 5 = Sanitary, adjustable fitting 8 = 600 lbs. welded RF flange PROCESS CONNECTION SIZE A = % in. (NPT for % in. pipe) F = 3 in. B = 1 in. (NPT for % in. hose) G = 4 in. C = 1 ½ in. J = 6 in. E = 2½ in. TEMPERATURE (DIGITAL THERMOMETERS) 0 = None | | | PROCESS CONNECTION TYPE | | | | = | | 9 | | Sanitary, adjustable fitting PROCESS CONNECTION SIZE A = %4 in. (NPT for %6 in. pipe) B = 1 in. (NPT for %6 in. hose) C = 1½ in. B = 2½ in. TEMPERATURE (DIGITAL THERMOMETERS) D = 2 in. TEMPERATURE (DIGITAL THERMOMETERS) D = None S = Five DTs, evenly spaced as API 1 = One DT, fixed position § C = None S = Five DTs, evenly spaced as API L = Twelve DTs, evenly spaced per as API F will be used position # U = US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if | 1 | = | NPT, adjustable fitting | 6 | = | 150 lbs. welded RF flange | | | | | PROCESS CONNECTION SIZE A = ¾ in. (NPT for 5% in. pipe) B = 1 in. (NPT for 7% in. hose) C = 1½ in. D = 2 in. D = 2½ in. TEMPERATURE (DIGITAL THERMOMETERS) O = None D = None S = Five DTs, evenly spaced as API C = 10 one DT, fixed position § C = Five DTs, customer defined position # C = None C = None C = 1½ in. TEMPERATURE (DIGITAL THERMOMETERS) O = None S = Five DTs, evenly spaced as API L = Twelve DTs, customer defined position # C = Notes: H If this DT option is selected, option '18 E' must also be selected. S One DT at 203 mm (8 in.) from the end of the transmitter. Notes: H If this DT option is selected, option '18 E' must also be selected. S One DT at 203 mm (8 in.) from the end of the transmitter. W = Metric (millimeters) Encode length in millimeters if using metric (XXXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 6096 mm (240 in.) Teffon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) S PECIAL E = Engineering special (not affecting agency controlled parts or features) | 4 | = | Sanitary, welded | 7 | = | 300 lbs. welded RF flange | | | | | A = %4 in. (NPT for %6 in. pipe) B = 1 in. (NPT for 7% in. hose) C = 1½ in. D = 2 in. D = 2½ in. D = 2½ in. D = None TEMPERATURE (DIGITAL THERMOMETERS) Five DTs, evenly spaced as API TEMPERATURE (DIGITAL THERMOMETERS) D = Five DTs, customer defined position # K = Twelve DTs, customer defined position # Notes: H if this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the end of the transmitter. UNIT OF MEASUREMENT UNIT OF MEASUREMENT UNIT OF MEASUREMENT UNIT OF Great in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (inches) Encode length in inches if ordering in US Customary (XXX.XX in.) LENGTH (Order length based on unit of measurement) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL E = Engineering special (not affecting agency controlled parts or features) | 5 | = | Sanitary, adjustable fitting | 8 | = | 600 lbs. welded RF flange | | | , | | B = 1 in. (NPT for 7½ in. hose) C = 1½ in. D = 2 in. D = 2 in. D = 2 in. D = 2½ in. D = 1½ in. D = 1½ in. D = 2½ in. D = 2½ in. D = 6 in. D = 1½ 1 | | | PROCESS CONNECTION SIZE | | | | = | | 10 | | C = 1½ in. D = 2 in. D = 2 in. D = 2 in. D = 2½ in. TEMPERATURE (DIGITAL THERMOMETERS) TEMPERATURE (DIGITAL THERMOMETERS) D = None D = None D = None D = Five DTs, evenly spaced as API D = None D = Five DTs, customer defined position # D = Notes: H ff this DT option is selected, option '18 E' must also be selected. Some DT at 203 mm (8 in.) from the end of transmitter: UNIT OF MEASUREMENT UNIT OF MEASUREMENT M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) UNIT OF MEASUREMENT ENGIT Or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) S = Standard product E = Engineering special (not affecting agency controlled parts or features) Evel Plus** Liquid-Level Transmitters M-Series Model MG Digital Transmitter | A | = | | F | = | 3 in. | | | | | D = 2 in. E = 2½ in. TEMPERATURE (DIGITAL THERMOMETERS) 0 = None 5 = Five DTs, evenly spaced as API 1 = One DT, fixed position § 6 = Five DTs, customer defined position # 8 Twelve DTs, customer defined position # Notes: # If this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the end of the transmitter. UNIT OF MEASUREMENT M = Metric (millimeters) Encode length in millimeters if using metric (XXXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) S = Standard product E = Engineering special (not affecting agency controlled parts or features) | В | = | , | G | = | | | | | | TEMPERATURE (DIGITAL THERMOMETERS) Transmitter) Tr | C | = | | H | = | , | | | | | TEMPERATURE (DIGITAL THERMOMETERS) Temperature (DIGITAL THERMOMETERS) Temperature | D | = | | J | = | 6 in. | | | | | O = None | E | = | | | | | | |] | | 1 = One DT, fixed position § 2 = One DT, customer defined position # 3 | _ | | | - | | Five DTs, evenly appeard as ADI | -= | |] 11 | | Comparison of the content of the position of the content of the position | 1 | = | | | = | , , , | | | | | Notes: # If this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the end of the transmitter. UNIT OF MEASUREMENT M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | 1 | = | | | = | · | | | | | Notes: # If this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the end of the transmitter. — UNIT OF MEASUREMENT Metric (millimeters) Encode
length in millimeters if using metric (XXXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | 2 | = | One DT, customer defined position # | I. | = | | | | | | # If this DT option is selected, option '18 E' must also be selected. § One DT at 203 mm (8 in.) from end of transmitter if the order length is less than 9144 mm (360 in.). If the length greater, One DT at 914 mm (36 in.) from the end of the transmitter. UNIT OF MEASUREMENT M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | | Notes: | L | = | Twelve DTS, customer defined position if | | | | | 914 mm (36 in.) from the end of the transmitter. UNIT OF MEASUREMENT M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) LENGTH (Order length based on unit of measurement) Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | | # If this DT option is selected, option '18 E' must also be selected | | | | | | | | UNIT OF MEASUREMENT M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) LENGTH (Order length based on unit of measurement) Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | | | ngth | is le | ss than 9144 mm (360 in.). If the length greater, One DT at | | | | | M = Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) LENGTH (Order length based on unit of measurement) Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | | | | | | = | | 12 | | LENGTH (Order length based on unit of measurement) = Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | M | = | Metric (millimeters) Encode length in millimeters if using metric | U | = | US Customary (inches) Encode length in inches if ordering | | | | | = Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | | (XXXXX mm) | | | in US Customary (XXX.XX in.) | | 7 | | | 7620 mm (300 in.) = Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | | LENGTH (Order length based on unit of measurement) | | | = | | 13- | 17 | | SPECIAL S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | = | | | = | | | | | | S = Standard product E = Engineering special (not affecting agency controlled parts or features) Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | | = | , | | | | = | | 18 | | Level Plus® Liquid-Level Transmitters M-Series Model MG Digital Transmitter | S | = | | E | = | | | | , | | | | | | 0 | | , and a state of the t | | 4TC - | | ## Model number identification for ATEX and IECEx based approval | | | TRANSMITTER MODEL - | | - = M 1 | |---|---|--|---|-------------------------| | M | = | Magnetostrictive transmitter | | - [] | | G | = | Digital output level transmitter APPROVAL AGENCY | | - = G 2
- = 3 | | E | | ATEX approved | P = CCoE approved B = INMETRO | | | Н | = | IECEx approved OUTPUT | K = KC approved | _ 🗀 , | | М | = | Modbus RTU data format | F = FOUNDATION™ fieldbus (Flameproof Only) | - = 4 | | D | | MTS DDA | resilential industry (namepress emy) | | | | | HOUSING TYPE | | - = 5 | | В | = | Single Cavity (Flameproof IIB) | R = Single Cavity (ATEX, EEx ia IIB) | | | C | = | Dual Cavity (Flameproof IIB) | S = Dual Cavity (ATEX, EEx ia IIB) | | | F | = | NEMA 4X 316L SS with cable (ATEX, EEx ia IIA) | 4 = NEMA 4X, 316L SS with terminal block (ATEX, EEx ia | | | G | = | Single Cavity (ATEX, EEx ia IIA) | IIA) 5 = NEMA 4X, 316L SS with terminal block (ATEX, EEx ia IIB) | | | н | = | Dual Cavity (ATEX, EEx ia IIA) | | | | P | = | NEMA 4X, 316L SS with cable (ATEX, EEx IIB) | | | | | | ELECTRONICS MOUNTING — | | - =6 | | 1 | | Integral electronics | | | | _ | | TRANSMITTER PIPE/HOSE ———————————————————————————————————— | | - = 7 | | В | | Industrial end-plug with stop collar | M = Flexible w/bottom fixing hook (stainless steel only) | | | C | | Sanitary, T-bar, TB | N = Flexible w/bottom fixing weight (stainless steel only) | | | D | | Sanitary, drain-in-place, DP | P = Flexible w/bottom fixing magnet (stainless steel only) | | | E | | Sanitary, clean-in-place, CP | L = Sanitary Special | | | F | = | Sanitary, drain-in-place, no hole, DN | | | | _ | | | ote: contact factory for other materials) | - = 8 | | 1 | | Stainless steel, 1,4404 | A = Teflon / FEP | | | 2 | | Stainless steel, 1,4404 electropolished (3A approved, Ra | a 15 tinish) | | | 3 | | PROCESS CONNECTION TYPE | | | | 1 | = | NPT, adjustable fitting | 7 = 300 lb. welded RF flange | - = <u> </u> | | 4 | | Sanitary, welded | 8 = 600 lb. welded RF flange | | | 5 | | Sanitary, adjustable fitting | 9 = DIN flange welded according to specification | | | 6 | | 150 lb. welded RF flange | , | | | | | PROCESS CONNECTION SIZE | | · = 10 | | Α | = | ¾ in. (NPT for 5⁄8 in. pipe) | F = 3 in. | | | В | = | 1 in. (NPT for 7/8 in. hose) | G = 4 in. | | | C | | 1½ in. | H = 5 in. (except sanitary) | | | D | = | 2 in. | J = 6 in. | | | Ε | = | 2½ in. | | | ## **Product Overview** ## Model number identification continued | | | TEMPERATURE (DIGITAL THERMOMETERS) | | | | - = | | 11 | |---|---|--|-------|-------|--|-----|-----------|----| | 0 | = | None | 5 | = | Five DTs, evenly spaced as API | | | | | 1 | = | One DT, fixed position§ | 6 | = | Five DTs, customer defined position # | | | | | 2 | = | One DT, customer defined position # | K | = | Twelve DTs, evenly spaced per API | | | | | | | Note: #If this DT option is selected, option '18 E' must also be selected | L | = | Twelve DTs, customer defined position # | | | | | | | § One DT at 203 mm (8 in.) from end of transmitter if the order leng
914 mm (36 in.) from the end of the transmitter. | gth i | is le | ss than 9144 mm (360 in.). If the length greater, One DT at | | | | | | | UNIT OF MEASUREMENT | | | | - = | , | 12 | | M | = | Metric (millimeters) Encode length in millimeters if using metric (XXXXX mm) | U | = | US Customary (inches) Encode length in inches if ordering in US Customary (XXX.XX in.) | | | | | | | LENGTH (Order length based on unit of measurement) | | | = | | 13-17 | 7 | | | = | Rigid or Sanitary transmitter: 508 mm (20 in.) to 7620 mm (300 in.) | | = | Flexible transmitter: 3048 mm (120 in.) to 22,000 mm (866 in.) except ATEX EEx ia IIB max. length 13500 mm (531 in.) | | _ | | | | = | Teflon transmitter: 508 mm (20 in.) to 6096 mm (240 in.) | | | | | | | | | | SPECIAL - | | | | - = | | 18 | | S | = | Standard product | E | = | Engineering special (not affecting agency controlled parts or features) | | | | ## **Product specifications** | Parameters | Specifications | Parameters | Specifications | |-----------------------|---|----------------------------|--| | LEVEL OUTPUT | Cp Somoutions | Lightning/ | Stage 1: | | Measured | | Transient | Line-to-ground surge suppression; | | variable: | Product level and interface level | protection: | IEC 61000-4-5 | | Output signal / | Modbus RTU, DDA or | | Stage 2:
Line-to-line and line-to-ground transient | | Protocol: | FOUNDATION™ fieldbus | | suppressors; IEC 61000-4-4 | | Order length: | Flexible hose: | CALIBRATION | | | • | (ATEX EEx ia IIB): | Zero adjust | | | | 3048 mm (120 in.) to 13500 mm (531.5 in.)
(All Else): | range: | Anywhere within the active length | | | 3048 mm (120 in.)
to 22000 mm (866 in.) Δ § | Span adjust | E.W. J. 1. 450 (01.1) | | | Δ § Rigid pipe: 508 mm (20 in.) to | range: | Full scale to 152 mm (6 in.) from zero | | | 7620 mm (300 in.) ∆ § | ENVIRONMENTAL | | | | Sanitary pipe: 508 mm (20 in.) to | Enclosure rating: | NEMA Type 4X | | | 7620 mm (300 in.) ∆ § | Humidity: | 0 to 100% relative humidity, non- | | | ∆ Contact factory for longer lengths. § Order length equals the measurement range plus | o .: | condensing | | | the inactive zone. | Operating
temperatures: | Electronics*:
-40 °C (-40 °F) to 71 °C (160 °F) | | Inherent | .1 mm (0.020 in) | po | Sensing element: | | accuracy: | ±1 mm (0.039 in.) | | -40 °C (-40 °F) to 125 °C (257 °F) ◊ | | Hysteresis: | 0.002% F.S. or 0.397 mm (1/64 in.)* | | Temperature element:
-40 °C (-40 °F) to 105 °C (221 °F) | | | (any direction) | | ♦ Contact factory for specific temperature ranges. | | | * Whichever is greater | | Consult Agency Approvals section for approval | | Resolution: | 0.025 mm (0.001 in.) | | specific ambient temperature rating. | | Calculated variables: | GOVP
GOVI | Vessel pressure: | Industrial Rigid Pipe: 1000 psi (70 bar) Sanitary Pipe: 435 psi (30 bar) | | 1411451551 | GOVT | | Teflon Pipe: 100 psi (7 bar) | | | GOVU
NSVP | | Flexible Hose: 260 psi (18 bar) | | TEMPEDATURE OF | | Materials: | Wetted parts: 316L stainless steel † | | TEMPERATURE OL | | | Non-wetted parts: 316L stainless steel,
Epoxy coated aluminum | | Measured variable: | Average and multi-point temperatures
Up to 12 Modbus ∞ | | † Contact factory for alternative materials. | | | Up to 5, DDA and Foundation™ fieldbus | FIELD INSTALLATI | ON | | | ∞ Minimum length of 2032 mm (80 in.) for 12 | Housing | Single cavity: | | _ | temperature positions. | dimensions: | 127 mm (5 in.) by 123 mm (4.85 in.) | | Temperature accuracy: | ±0.2 °C (0.4 °F) range -40 °C (-40 °F) | | 121 mm (4.75 in.) O.D.
Dual cavity: | | accuracy. | to -20 °C (-4 °F)*, | | 127 mm (5 in.) by 177 mm (6.95 in.) | | | ±0.1 °C (0.2 °F) range -20 °C (-4 °F) | | 121 mm (4.75 in.) O.D.
NEMA Type 4X: | | | to 70 °C (158 °F)*,
±0.15 °C (0.3 °F) range 70 °C (158 °F) | | 81 mm (3.2 in.) by 123 mm (4.85 in.) 0.D. | | | to 100 °C (212 °F)*, | Mounting: | Rigid pipe: | | | ±0.5 °C (0.9 °F) range 100 °C (212 °F)
to 125 °C (257 °F)*, | • | 34 in. Adjustable MNPT fitting, Flange and | | | * For models MGA, MGE, and MGH. All other models | | Tri-Clamp® Mounts | | | ±0.28 °C (0.5 °F) | | Flexible hose: 1 in. Adjustable MNPT fitting, Flange | | ELECTRONICS | _ | | mount | | Input voltage: | Modbus and DDA: | Wiring: | Modbus and DDA: | | par ronago. | 10.5 to 30.1 Vdc | - | 4-wire connections plus earth ground. | | | 28 Vdc maximum for I.S. approval | | Daniel Woodhead 6-pin male connector.
Integral cable with pigtails. | | | FOUNDATION™ fieldbus:
9 to 32 Vdc bus powered | | FOUNDATION™ fieldbus: | | Fail safe: | High, full scale | | Type A fieldbus cable | | Reverse polarity | | ELECTRICAL CONN | IECTIONS | | protection: | Series diode | Single and Dual | 3/4 in. FNPT conduit opening, M20 for ATEX/ | | | | Cavity: | IECEx/CCoE version | | | | MERGAT () | 1/ PNDT L'I ' | ½ in. FNPT conduit opening NEMA Type 4X: #### **Installation & Mounting** #### **Installation and mounting** If the installation is going to occur in a hazardous area, completely read the Agency Information section before starting any work. The Agency Information outlines additional regulations that need to be followed in order for the installation to comply with hazardous area regulations. This section contains information about storing your transmitter (prior to installation) and detailed procedures for installing and mounting your transmitter. #### **Storage** If storage is required prior to installation, store indoors in a dry environment at ambient temperature range not exceeding -40 $^{\circ}$ C (-40 $^{\circ}$ F) to 71 $^{\circ}$ C (160 $^{\circ}$ F). ## Stilling wells and guide poles Level Plus transmitters can be mounted in slotted or un-slotted stilling wells but a slotted stilling well is always preferred. Using a un-slotted stilling well will negatively affect performance of any level device as the level in the stilling well will differ from the level in the tank. The Level Plus transmitter can also be installed to one side of the stilling well to also allow for sampling and manual gauging from the same opening as the automatic tank gauging. Contact *Technical Support* for details. Level Plus transmitters do not require a stilling well for installation. Our transmitters are installed in numerous tanks without stilling wells with no loss in performance due to our patented flexible waveguide and hose. A stilling well is highly recommended for agitated, turbulent, and/or fast filling tanks. #### Installation The installation procedures below are illustrated using the adjustable NPT fitting for a threaded flange mount. The procedures will have to be slightly adjusted if using a welded flange or sanitary tri-clamp mount. #### **RIGID PROBE** #### **Tools Required:** - · Channel lock pliers - Common screwdriver - 5/32 in. Hex key (allen wrench) #### **Caution:** It is recommended that assembly and mounting of this transmitter should not be performed alone. To ensure proper and safe assembly of the M-Series transmitter, a minimum of two (2) individuals are recommended. Gloves are also recommended. In addition, PPE is required for work areas such as safety shoes, safety glasses, hard hat, and fire resistant clothing. Perform the following steps to Install the Model MG Digital transmitter: - 1. Remove the stop collar and E-ring. With assistance, feed the rigid pipe through the hole of the removed tank flange until the flange is positioned near the top of the transmitter. Insert the threaded portion of the adjustable fitting into the customer supplied flange and tighten (apply pipe thread sealant if required). Be careful not to drop the flange as it can damage the transmitter. - 2. Slide the product float onto the rigid pipe. Slide the interface float (optional) onto the rigid pipe. Install stop collar 2 inches from the bottom (see '**Note**' below). Do not drop the float(s) or allow them to free fall along the rigid pipe as damage may result. Install E-ring. #### Note: The stop collar can be removed or adjusted based on the float selected for the application. Please consult the factory for more information. - Slide float(s) back down to the stop collar to prevent them from free falling during installation into the tank. Insert the rigid pipe (with floats) through the tank opening and lower the transmitter/float assembly into the tank until it rests on the bottom. DO NOT DROP OR DAMAGE THE PIPE. - 4. Secure the flange onto the tank mount. - 5. Pull the transmitter upward so the end plug is just resting on the floor of the tank. Tighten the adjustable fitting to hold the transmitter in place. - 6. Terminate the field wire cables noting proper wire orientation. #### **FLEXIBLE PROBE** #### **Caution:** When assembling and installing the Model MG transmitter, be careful not to allow the flexible hose to kink or be coiled in less than 16 in. (406.5 mm) diameter. It is recommended that assembly and mounting of this transmitter should not be done alone. To ensure proper and safe assembly of the Model MG transmitter, a minimum of two (2) individuals are recommended. Gloves are also recommended. PPE is required for work areas such as safety shoes, safety glasses, hard hat, and fire resistant clothing. #### **Tools Required:** - 9/16 in. Socket and ratchet - · Channel lock pliers - 3/16 in. Hex key (allen wrench) - 1. Remove the stop collar. With assistance, feed the flexible hose through the hole of the removed tank flange until the flange is positioned at the rigid section of pipe near the top of the transmitter. Insert the threaded portion of the adjustable fitting into the customer supplied flange and tighten (apply pipe thread sealant if required). Be careful not to drop flange on the flexible hose as damage may result. - 2. Slide the product float onto the flexible pipe. Slide the interface float (optional) onto the flexible pipe. Install stop collar 3 inches from the bottom of rigid section (see '*Note*' below). Do not drop float(s) or allow them to free fall along the flexible pipe as damage may result. #### Note: The stop collar can be removed or adjusted based on the float selected for the application. Please consult the factory for more information. 3. Mount the hook, weight, or the magnet to the welded end-plug section of the pipe (this is the bottom rigid section of the pipe) using the supplied nut, spacer and washer, tighten securely as shown in *Figure 5. For the magnet, remove washer before installing in tank*. Figure 5. Bottom fixing hardware #### DO NOT DROP OR DAMAGE THE PIPE Important: Avoid kinking or bending the flexible pipe in less than 16 inch (406 mm) diameter or damage may result. - 4. Slide float(s) back down to the stop collar to prevent them from free falling during installation into the tank. Insert the flex pipe and floats through the tank riser pipe and lower the transmitter/float assembly into the tank until it rests on the bottom. If you are using a bottom-fixing hook, fasten the hook to the appropriate customer-supplied mating hardware at the tank bottom. - 5. Secure the flange onto the tank riser pipe. - 6. Pull the transmitter upward to straighten the flexible pipe until the resistance of the weight, magnet, or hook is felt without raising the weight or magnet off the floor of the tank. Tighten the adjustable fitting to hold the transmitter in place. - 7. Terminate the field wire cables noting proper wire orientation. #### **Installation & Mounting** #### **Mounting** The method of mounting the Level Plus M-Series transmitter is dependent on the
vessel or tank in which it is being used, and what type of transmitter is being mounted. There are three typical methods for mounting; threaded flange mounting, welded flange mounting, and sanitary tri-clamp mounting. #### THREADED FLANGE MOUNTING In most applications, the Model MG transmitter can be mounted directly to the tank or flange via a NPT threaded fitting, assuming there is a proper threaded connection available. If the float will not fit through the flange opening when the flange is removed, there must be some alternative means to mount the float on the transmitter from inside the vessel; this may require an access port nearby the entry point of the transmitter as shown in *Figure 6*. Figure 6. Threaded flange mounting for rigid (shown) and flexible pipe #### WELDED FLANGE MOUNTING The Model MG transmitter can also be mounted to a tank flange as shown in *Figure 7*. First, install float(s) onto the transmitter. Second, install the float retaining hardware on the tip of the transmitter. To complete the installation, mount the transmitter, flange and float(s) as a unit in to the tank. Figure 7. Welded flange mounting for rigid and flexible (shown) pipe #### **SANITARY TRI-CLAMP MOUNTING** In sanitary applications, the M-Series transmitter is mounted to the tank using a standard sanitary connection and clamp as shown in Figure 8. In most cases it is not necessary to remove the float as the sanitary end-plug fitting is sized to allow installation with the float in place. Please note that some sanitary end-plug styles have float(s) permanently mounted as shown in Figure 8. To install the clamp, the transmitter and float(s) into the mating process connection and attach the sanitary tri-clamp. Figure 8. M-Series Model MG transmitter. Tank mounted with sanitary connection ^{*}This end plug style has permanently mounted floats. Floats cannot be removed from pipe. **Figure 9.** End-plug options for transmitters in a sanitary pipe application #### **Installation & Mounting** ## **Electrical connections and wiring procedures** A typical intrinsically safe connection for the Level Plus M-Series transmitter includes protective safety barriers, a power supply and a reading or monitoring device. Refer to *Agency information* and *Brief Operation Manual for Safe Use* for detailed information. A typical explosion proof connection for the M-Series transmitter includes a power supply and a reading or monitoring device connected using explosion proof conduit. Refer to *Agency information* and *Brief Operation Manual for Safe Use* for detailed information. #### Notes: For explosion proof installation, safety barriers are not required and wiring shall be installed in accordance with the National Electric Code ANSI/NFPA 70, Article 501-30 or the regional equivalent. ## Safety recommendations for installation Always follow applicable local and national electrical codes and observe polarity when making electrical connections. Never make electrical connections to the M-Series transmitter with power turned on. Make sure that no wire strands are loose or sticking out of the terminal block connection which could short and cause a problem. Make sure that no wire strands, including shield, are in contact with the electronic module enclosure. The electronics module enclosure is grounded through internal circuitry and electrically isolated from the explosion-proof enclosure. ### **Industrial topologies** There are four topologies described and illustrated below. However, the daisy chain topology is not recommended by MTS. #### POINT-TO-POINT The point-to-point topology consists of having only one device on the loop as shown in *Figure 10*. This topology is not usually used with a bus network since it does not take advantage of placing multiple devices on a loop. #### **BUS WITH SPURS** The bus with spurs topology has a main trunk cable that has each device connected via its own spur at a junction box as shown in *Figure 11*. The bus with spurs and tree topologies can also be used together to form a hybrid topology. #### TREE ALIGNMENT The tree topology is very similar to the bus with spurs topology with the main difference of having a common junction box for all of the transmitters as shown in *Figure 12*. Bus with spurs and tree topologies can also be used together to form a hybrid topology. #### **DAISY CHAIN** The daisy-chain topology utilizes a single cable that is connected to all of the transmitters with the cable being interconnected at each field device. When using this topology make sure that the wiring practice allows for one transmitter to be disconnected without disconnecting the entire loop as shown in *Figure 13*. MTS does not suggest using the daisy-chain topology. Figure 10. Point-to-point topology Figure 11. Bus with spurs topology Figure 12. Tree topology Figure 13. Daisy-chain topology ## Recommended cable types Listed below are general requirements of cable types for the Level Plus Model MG digital transmitter. #### CABLE RECOMMENDATION FOR MODBUS AND DDA #### Cable recommendation: - Shielded, twisted pair, 24 AWG or heavier - Minimum 85 °C temperature rating. - Minimum 0.010 in. (0.25 mm) insulation thickness - 30 picofarads/foot or less. (see Notes). #### Notes - 1. The return conductor for the power supply circuit is connected to the shield at the safety barrier ground terminal. When determining the capacitance of cable for the power supply circuit, use the manufacturer's capacitance specifications shown for one conductor and the other conductor connected to the shield. - Most cable manufacturers do not list inductance properties for cables. Where the inductance properties are unavailable, ISA RP12.6 (Installation of Intrinsically Safe Instrument Systems in Class I Hazardous Locations) recommends the use of 0.2 μH (micro henries) per foot as a value for cable inductance. - 3. Termination and biasing of RS-485 data lines are as follows: - **Biasing** Each M-Series transmitter has internal high impedance biasing resistors (30K Ω) on both RS-485 data lines. No additional biasing resistors should be present on the connecting devices (PLC, DCS, PC, converter). - **Termination** Each M-Series transmitter has an internal termination resistor (100K Ω) installed across the RS-485 signal lines. No additional termination resistors are necessary in the connecting devices (PLC, DCS, PC, converter). #### **CABLE RECOMMENDATION FOR FOUNDATION™ FIELDBUS** General requirements of cable types for the M-Series FOUNDATION™ fieldbus transmitter: Type A, FOUNDATION™ fieldbus cable (see Table 1 to the right) #### **Parameter Value** | Resistance | 15Ω/km to 150 Ω/km | |-------------|---------------------| | Inductance | 0.4mH/km to 1mH/km | | Capacitance | 80nF/km to 200nF/km | Table 1. Type A cable #### **Electrical conduit installation** #### Important: Seal all conduits within 18 inches. #### Notes: - 1. Use an explosion proof type conduit sealing fitting. - 2. Tighten housing cover (both front and back covers if dual cavity) to full stop against the O-ring. - 3. Do not over-tighten compression fittings. - 4. Use side conduit entry only. - In high humidity areas, use a breather drain type conduit sealing fitting to minimize moisture intrusion. #### **Electrical Connections and Wiring** ## Grounding #### Note: Grounding the transmitter through a threaded conduit connection does not provide sufficient ground. There are two methods to provide an earth ground to the earth ground of the electronics. - Run an earth ground through the conduit and connect directly to the earth ground of the electronics - Run an earth ground directly to the ground lug on the outside of the housing and connect the ground lug inside of the housing to the earth ground of the electronics. Refer to *Table 2* and *Table 3* below for a limited listing of possible barrier selections. #### **Safety barriers** #### **Entity Parameter** | FM | Vmax =28 Vdc
Imax = 200 mA
Ci = 0µF
Li = 0 mH | |------|--| | ATEX | Ui = 28 Vdc
Σ Ii = 200 mA
Ci = Negligibly low
Li = Negligibly low | | CSA | Vmax =30 Vdc
Imax = 100 mA
Ci = 0µF
Li = 0 mH | | Supplier | Туре | Maximum voltage | Maximum current | Maximum power | Maximum resistance | Number of channels | |----------|---------------------|-----------------|-----------------|---------------|--------------------|--------------------| | STAHL | 9001/01-280-165-101 | 28 Vdc | 165 mA | 1155 mW | 198Ω | 1 | | STAHL | 9001/01-280-110-101 | 28 Vdc | 110 mA | 770 mW | 294Ω | 1 | | MTL | 728 | 28 Vdc | 93 mA | 651 mW | 300Ω | 1 | | MTL | 728+ | 28 Vdc | 93 mA | 651 mW | 300Ω | 1 | | MTL | 7028+ | 28 Vdc | 93 mA | 651 mW | 300Ω | 1 | | MTL | 7128+ | 28 Vdc | 93 mA | 651 mW | 300Ω | 1 | | MTL | 7728+ | 28 Vdc | 93 mA | 651 mW | 300Ω | 1 | Table 2. Power supply (+24 Vdc) | Supplier | Туре | Maximum voltage | Maximum
current
(each channel) | Maximum power
(each channel) | Maximum resistance
(each channel) | Number of channels | |----------|---------------------|-----------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------| | STAHL | 9001/01-086-010-101 | 8.6 Vdc | 10 mA | 21.5 mW | 963Ω | 1 | | STAHL | 9002/11-120-024-001 | 12 Vdc | 12 mA | 70 mW | 1156Ω | 2 | | MTL | 764+ | 12 Vdc | 24 mA | 72 mW | 1075Ω | 2 | Table 3. Communication lines (TX/RX+ and TX/RX-) #### Maintenance and field service This section contains information about post installation maintenance and provides an overview of MTS Sensors' repair and replacement procedures. ## General maintenance and field service requirements #### Notes: Please contact Technical Support or Customer Service for help when damage occurs in order to obtain a return materials authorization (RMA) number. Packages without a RMA number may be rejected. Any unit that was used in a process must be
properly cleaned in accordance with OSHA standards, before it is returned to the factory. A Material Safety Data Sheet (MSDS) must accompany material that was used in any media. #### **FLOAT MAINTENANCE** Level Plus M-Series transmitters use magnetostrictive technology and only have one moving part—the float. This technology ensures no scheduled maintenance or recalibration is required. However, MTS recommends that you check the transmitter pipe annually for build up of process material. Floats should move freely along the pipe. If they do not, routine cleaning should be performed. #### **FIELD SERVICE** If damage does occur to a M-Series transmitter, the transmitter can be serviced in the field with replacement parts. All electronic parts can be changed in the field without having to open the process vessel. Please contact Technical Support and refer to the Transmitter Electronics Replacement Guide (MTS part no. 551104) for detailed steps of field replacement. #### **SERVICE / RMA POLICY** If the customer suspects their transmitter is damaged or not functioning correctly, call *MTS Technical Support* for further instruction. If it is necessary to return the transmitter to the factory, an RMA number is required and can only be issued by Technical Support. Product returns that do not include an RMA will be returned to the customer. MTS evaluates the transmitter and advises the customer whether a repair or replacement is necessary and any cost that might be incurred. If the customer declines repair/replacement or the transmitter has no fault found, the unit is sent back as is and the customer is charged with a standard evaluation fee. If the transmitter is under warranty and a manufacturer's defect is detected, there will be no cost to the customer for repair or replacement. If the transmitter is out of warranty or if the customer has damaged the transmitter, a repair or replacement quote will be provided. In specific cases where the transmitter can not be removed and returned to the factory for evaluation, field evaluations can be performed on location by an MTS technician. If field evaluation must be performed, the customer is responsible for all expenses incurred for travel, evaluation, parts and repair time. However, if the transmitter is under warranty and the problem is due to a manufacturer's defect, there is no cost to the customer for replacement parts. To discuss all service options, contact *Technical Support*. ## **Troubleshooting Procedures** ## **Troubleshooting** Table 4 below contains troubleshooting information for the Model MG digital transmitter. ## **Troubleshooting procedures** | Symptom | Possible Cause | Action | |-----------------------------------|------------------------------------|---| | No communication with transmitter | No power | Check voltage at transmitter | | | Wiring incorrect | Reference installation drawing (see'Electrical connections and wiring') | | | Wrong address | DDA factory default is '192'
Modbus factory default is '247' | | | Wrong software | Confirm correct software | | | Wrong protocol | Confirm software and transmitter are same protocol | | Missing magnet error | Float not recognized | Confirm that the float is attached | | | Float is in the dead zone | Raise float to see if the error stops | | | Wrong number of floats selected | Confirm that the number of floats on the transmitter and the number of floats the transmitter is attempting to verify are the same. | | Trigger level error | Gain needs to be adjusted | Consult Factory | | | SE is damaged | Consult Factory | | | Min. trigger level too high | Consult Factory | | Volume calculation error | No strap table entered | Enter strap table | | | Level outside range of strap table | Enter additional points in strap table | | | Strap table incorrect | Check value entries | | VCF error | No VCF table entered | Enter VCF table | | | VCF table incorrect | Check VCF value entries | Table 4. Troubleshooting reference ## Quick start-up guide (Modbus and DDA) #### **BEFORE YOU BEGIN** #### Note: You must use a RS-485 converter with "Send Data Control" and the M-Series Set-up Software to ensure proper operation. #### xample B & B Electronics 485BAT3 (815-433-5100 www.bb-elec.com). #### **Default communication parameters** | Modbus: 4800 BAUD | 8, N, 1 | |-------------------|---------| | DDA: 4800 BAUD | 8, E, 1 | #### **OUICK START-UP PROCEDURE** - 1. Connect +24 Vdc to terminals. - 2. Connect data lines to terminals. - Connect the PC (or other device) to data lines. (If you are using a PC, use a RS-232 to RS-485 converter. See *Note* above for more information.) - 4. Turn on power to the transmitter. - 5. Start the M-Series Setup Software. Click the 'Data From Device' tab. Click the 'Device' pull down menu (located in the upper right corner of the window) to verify communications using factory default address '247' for Modbus or factory default '192' for DDA. - 6. Change the address to one that is suitable for the installation network. - 7. Verify proper operation of product and or interface floats and temperature. - 8. Turn off power to the transmitter. - 9. Remove data lines. - 10. Install the transmitter into the vessel (see Installation and mounting on page 11). - 11. Reconnect power and data lines. - 12. Verify communications with the host system (*repeat step 5*). - 13. Calibrate current tank level (optional). Setup is complete. #### **Modbus User Interface** #### **Modbus Interface** #### Notes: Termination and biasing of RS-485 data lines are as follows: #### Biasing Each M-Series transmitter has internal high impedance biasing resistors (30K Ω) on both RS-485 data lines. No additional biasing resistors should be present on the connecting devices (PLC, DCS, PC, Converter). #### Termination Each M-Series transmitter has an internal termination resistor (100K Ω) installed across the RS-485 signal lines. No additional termination resistors are necessary in the connecting devices (PLC, DCS, PC, Converter). #### **MODBUS IMPLEMENTATION** The Modbus implementation for the M-Series digital transmitter conforms to the 'Modicon Modbus Protocol Reference Guide, PIMBUS-300 Rev. G' available from Modicon, Inc. The information provided below assumes familiarity with the Modbus protocol as outlined in this reference guide. All information provided applies to Modbus RTU protocol only. #### **MODBUS FUNCTION CODES** #### **Communication parameters:** Modbus: 4800 BAUD or 9600 8, N, 1 (Reference) Monitor: Modbus RTU Variable BAUD Rate 8, E, 1 The following Modbus function codes are supported: Function 03 - Read Holding Registers Function 04 - Read Input Registers Function 06 - Preset Single Register Function 08 - Diagnostics (Subfunction 00, Return Query Data) Function 08 - Diagnostics (Subfunction 01, Restart Communications Option) Function 08 - Diagnostics (Subfunction 04, Force Listen Only Mode) Function 16 - Preset Multiple Registers Function 17 - Report Slave ID #### Function 03 - Read Holding Registers The device responds to this message by returning the contents of the requested data register(s). (See 'Device Modbus Register Maps' on page 22). The following implementation-specific considerations apply: - If an unsupported or reserved register is requested, a maximum negative value (8000H or 80000000H for paired registers) is returned (See 'Device Modbus Register Maps' on page 212 for unsupported/reserved registers). - If a register contains an device error a maximum negative value is returned. - If a register is blank, indicating that the desired function is not enabled (e.g., volume calculations) a value of 0000H is returned. • Unsupported or reserved bits will always be set to 0. See 'Device Modbus Register Maps' on page 22 for alarm bit definitions. #### **Function 04 - Read Input Registers** This function is handled exactly the same as Function 03. (Be advised that all registers are read-only in this implementation). #### Function 06 – Preset Single Registers Confirmation of successful transmission is confirmed when the device responds by echoing back what was sent. #### Function 08 - Diagnostics (Subfunction 00, Return Query Data) The device responds to this request with the following data: Slave address: echoed Function: 08H Subfunction high: 00H Subfunction low: 00H Query data (16-bit): echoed Error check: 16-bit CRC/8-bit LRC #### Function 08 - Diagnostics (Subfunction 01, Restart Communications Option) #### Note: The communications event log is not supported. The "Query data" field is irrelevant (normally, FF00H would clear the log). If the device is in listen-only mode, the device responds to this message by switching out of listen-only mode - (resulting in no response being sent to the request). If the device is not in listen only mode, it responds as follows: Slave address: echoed Function: 08H Subfunction high: 00H Subfunction low: 01H Query data (16-bit): echoed (0000H or FF00H) Error check: 16-bit CRC/8-bit LRC #### Function 08 - Diagnostics (Subfunction 04, Force Listen-Only Mode) The device responds to this request by switching to listen-only mode. Messages are still received and parsed, but no responses are transmitted. To switch out of listen-only mode, issue a 'Restart Communications Option' request (function 08, subfunction 01) or cycle power. #### **Function 16 - Preset Multiple Registers** The device response returns the slave address, function code, starting address, and quantity of registers preset. #### **MODBUS FUNCTION CODES (CONTINUED)** #### **Function 17 - Report Slave ID** The device responds to this request with the following data: Slave address: echoed Function: 11H Byte count: 05H Slave ID: FFH Run indicator status: FFH (ON) Additional data: 'DMS' Error check: 16-bit CRC/8-bit LRC #### **Modbus Exceptions** The following standard Modbus
exceptions are implemented: Error code 01 (Illegal Function) #### Reported when: - A function other than 03, 04, 06, 08, 16 or 17 is requested - Function 08 is requested, and a subfunction other than 00, 01, or 04 is requested #### Error code 02 (Illegal Data Address) Reported when: • Function 03 or 04 is requested and the starting register number is greater than 5198 (register greater than 35198 or 45198) #### Error code 03 (Illegal Data Value) Reported when: • Function 03 or 04 is requested and the number of data points is greater than 800. #### **DEVICE MODBUS REGISTER MAPS** | Modbus
Register | Data
Address | Data Description ‡ denotes duplicate register | Note
Reference | |--------------------|-----------------|--|--------------------------| | 30001 | 0000 | Product Level High
Word (x 1000) | 2, Page 26
3, Page 27 | | 30002 | 0001 | Product Level Low
Word (x 1000) | | | 30003 | 0002 | Interface Level High
Word (x 1000) | | | 30004 | 0003 | Interface Level Low
Word (x 1000) | | | 30005 | 0004 | Roof Level High Word (x 1000) | Inactive | | 30006 | 0005 | Roof Level Low Word (x 1000) | Inactive | | 30007 | 0006 | Temperature 1 High
Word (x 10000) | 4, Page 27 | | 30008 | 0007 | Temperature 1 Low
Word (x 10000) | | | 30009 | 8000 | Temperature 2 High
Word (x 10000) | | | 30010 | 0009 | Temperature 2 Low
Word (x 10000) | | | 30011 | 0010 | Temperature 3 High
Word (x 10000) | | | 30012 | 0011 | Temperature 3 Low
Word (x 10000) | | | 30013 | 0012 | Temperature 4 High
Word (x 10000) | | | 30014 | 0013 | Temperature 4 Low
Word (x 10000) | | | 30015 | 0014 | Temperature 5 High
Word (x 10000) | | | 30016 | 0015 | Temperature 5 Low
Word (x 10000) | | | 30017 | 0016 | Temperature Average
High Word (x 10000) | 5, Page 27 | | | | Data Description | | |----------|---------|---|-------------| | Modbus | Data | Data Description ‡ denotes | Note | | Register | Address | duplicate register | Reference | | 30018 | 0017 | Temperature Average | | | | | Low Word (x 10000) | | | 30019 | 0018 | GOVP High Word | 6, Page 27 | | 30020 | 0019 | GOVP Low Word | | | 30021 | 0020 | GOVI High Word | 7, Page 27 | | 30022 | 0021 | GOVI Low Word | | | 30023 | 0022 | GOVT High Word | 8, Page 27 | | 30024 | 0023 | GOVT Low Word | | | 30025 | 0024 | GOVU High Word | 9, Page 27 | | 30026 | 0025 | GOVU Low Word | | | 30027 | 0026 | NSVP High Word | 10, Page 27 | | 30028 | 0027 | NSVP Low Word | | | 30029 | 0028 | MASS High Word | | | 30030 | 0029 | MASS Low Word | | | 30031 | 0030 | Temperature
Correction Method
High Word | 11, Page 27 | | 30032 | 0031 | Temperature
Correction Method
Low Word | | | 30033 | 0032 | API Gravity High
Word (x 100) | | | 30034 | 0033 | API Gravity Low Word (x 100) | | | 30035 | 0034 | Working Capacity
High Word (x 10) | | | 30036 | 0035 | Working Capacity Low
Word (x 10) | | | 30037 | 0036 | TEC High Word
(x 10000000) | 12, Page 27 | | 30038 | 0037 | TEC Low Word (x 10000000) | | ## Modbus User Interface ## **DEVICE MODBUS REGISTER MAPS (CONTINUED)** | 30039 0038 Density High Word (x 100) 13, Page 27 30040 0039 Density Low Word (x 100) 14, Page 27 30041 0040 Reference Temperature High Word (x 10) 14, Page 27 30042 0041 Reference Temperature Low Word (x 10) 15, Page 27 30043 0042 Volume Calculation Mode Low Word 15, Page 27 30044 0043 Volume Calculation Mode Low Word (x 10) 16, Page 27 30045 0044 Sphere Radius Low Word (x 10) 17, Page 27 30046 0045 Sphere Offset High Word (x 10) 17, Page 27 30047 Sphere Offset Low Word (x 10) 18, Page 27 30048 0047 Sphere Offset Low Word (x 10) 30050 0048 Average Interval High Word 18, Page 27 30050 0049 Average Interval Low Word 19, Page 27 30051 0050 Alarm/Status High Word 19, Page 27 30052 VCF Calculation Error Status 20, page 29 30054 0053 Volume Calculation Error Status 21, page 29 | Modbus
Register | Data
Address | Data Description
‡ denotes
duplicate register | Note
Reference | |--|--------------------|-----------------|---|-------------------| | 30040 0039 Density Low Word (x 100) 30041 0040 Reference Temperature High Word (x 10) 30042 0041 Reference Temperature Low Word (x 10) 30043 0042 Volume Calculation Mode High Word 30044 0043 Volume Calculation Mode Low Word (x 10) 30045 0044 Sphere Radius High Word (x 10) 30046 0045 Sphere Radius Low Word (x 10) 30047 0046 Sphere Offset High Word (x 10) 30048 0047 Sphere Offset Low Word (x 10) 30049 0048 Average Interval High Word 30050 0049 Average Interval Low Word 30051 0050 Alarm/Status Low Word 30052 0051 Alarm/Status Low Word 30053 0052 VCF Calculation Error Status 30054 0053 Volume Calculation Error Status 30055 - 0054 - Reserved 22, page 29 30099 Temperature Units Low 30100 0099 Temperature Units High 30101 D100 Density Units High < | | | Density High Word | | | 30041 0040 Reference Temperature High Word (x 10) 14, Page 27 30042 0041 Reference Temperature Low Word (x 10) 15, Page 27 30043 0042 Volume Calculation Mode High Word 15, Page 27 30044 0043 Volume Calculation Mode Low Word (x 10) 16, Page 27 30045 0044 Sphere Radius Low Word (x 10) 17, Page 27 30046 0045 Sphere Radius Low Word (x 10) 17, Page 27 30047 0046 Sphere Offset Low Word (x 10) 17, Page 27 30048 0047 Sphere Offset Low Word (x 10) 18, Page 27 30049 0048 Average Interval High Word 18, Page 27 30050 0049 Average Interval Low Word 19, Page 27 30051 0050 Alarm/Status High Page 27 19, Page 27 30052 0051 Alarm/Status Low Word 20, page 29 30053 0052 VCF Calculation Error Status 21, page 29 30054 0053 Volume Calculation Error Status 22, page 29 30100 0099 Tempe | 30040 | 0039 | Density Low Word | | | 30042 0041 Reference Temperature Low Word (x 10) 30043 0042 Volume Calculation Mode High Word 15, Page 27 30044 0043 Volume Calculation Mode Low Word 16, Page 27 30045 0044 Sphere Radius High Word (x 10) 16, Page 27 30046 0045 Sphere Radius Low Word (x 10) 17, Page 27 30047 0046 Sphere Offset High Word (x 10) 17, Page 27 30048 0047 Sphere Offset Low Word (x 10) 18, Page 27 30049 0048 Average Interval High Word 18, Page 27 30050 0049 Average Interval Low Word 19, Page 27 30051 0050 Alarm/Status Low Word 19, Page 27 30052 0051 Alarm/Status Low Word 20, page 29 30053 0052 VCF Calculation Error Status 21, page 29 30054 0053 Volume Calculation Error Status 21, page 29 30055- 0054 - 30099 Reserved 22, page 29 30100 0099 Temperature Units Low 30101 | 30041 | 0040 | Reference Tempera- | 14, Page 27 | | Mode High Word 30044 0043 Volume Calculation Mode Low Word 30045 0044 Sphere Radius High Word (x 10) 30046 0045 Sphere Radius Low Word (x 10) 30047 0046 Sphere Offset High Word (x 10) 17, Page 27 Word (x 10) 30048 0047 Sphere Offset Low Word (x 10) 30049 0048 Average Interval High Word 18, Page 27 Word 30050 0049 Average Interval Low Word 30051 0050 Alarm/Status High Word 30052 0051 Alarm/Status Low Word 30053 0052 VCF Calculation Error Status 21, page 29 Status 30054 0053 Volume Calculation Error Status 22, page 29 30099 0098 30100 0099 Temperature Units High High 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units Low 30106 0105 Length Units Low 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30100 0109 Set New Device Address 28, page 27 30201 200 Product Level High Word (x1000) ‡ 3, Page 27 30201 200 Product Level Low | 30042 | 0041 | | | | Mode Low Word 30045 0044 Sphere Radius High Word (x 10) 30046 0045 Sphere Radius Low Word (x 10) 30047 0046 Sphere Offset High Word (x 10) 17, Page 27 27 20048 0047 Sphere Offset Low Word (x 10) 30049 0048 Average Interval High Word 18, Page 27 27 40050
40050 400500 4005000 400500 400500 4005000 4005000 4005000 4005000 4 | 30043 | 0042 | | 15, Page 27 | | Word (x 10) | 30044 | 0043 | | | | Word (x 10) 30047 0046 Sphere Offset High Word (x 10) 17, Page 27 30048 0047 Sphere Offset Low Word (x 10) 18, Page 27 30049 0048 Average Interval High Word 18, Page 27 30050 0049 Average Interval Low Word 19, Page 27 30051 0050 Alarm/Status High Word 19, Page 27 30052 0051 Alarm/Status Low Word 20, page 29 30053 0052 VCF Calculation Error Status 21, page 29 30054 0053 Volume Calculation Error Status 21, page 29 30059 0054 - Status 22, page 29 30099 0098 Reserved 22, page 29 30100 0099 Temperature Units Low 23, page 29 30101 0100 Temperature Units Low 24, page 29 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume U | 30045 | 0044 | | 16, Page 27 | | Word (x 10) 30048 0047 Sphere Offset Low Word (x 10) 30049 0048 Average Interval High Word 18, Page 27 30050 0049 Average Interval Low Word 30051 0050 Alarm/Status High Word 19, Page 27 30052 0051 Alarm/Status Low Word 20, page 29 30053 0052 VCF Calculation Error Status 21, page 29 30054 0053 Volume Calculation Error Status 21, page 29 30055 - 0054 - Status Reserved 22, page 29 30100 0099 Temperature Units High 23, page 29 30101 0100 Temperature Units Low 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units Low 30107 0106 Length Units Low 30108 0107 Mass Units High < | 30046 | 0045 | | | | Word (x 10) 30049 0048 Average Interval High Word 18, Page 27 30050 0049 Average Interval Low Word 30051 0050 Alarm/Status High Word 19, Page 27 30052 0051 Alarm/Status Low Word 30053 0052 VCF Calculation Error Status 20, page 29 30054 0053 Volume Calculation Error Status 21, page 29 30055 - 0054 - Status Reserved 22, page 29 30100 0099 Temperature Units Low 23, page 29 30101 0100 Temperature Units Low 24, page 29 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units Low 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units Low 30109 0108 Mass Units Low | 30047 | 0046 | | 17, Page 27 | | Word Word Word Word Word Word Word Word 19, Page 27 Word 30051 0050 Alarm/Status High Word 19, Page 27 Word 30052 0051 Alarm/Status Low Word 30053 0052 VCF Calculation Error 20, page 29 Status 21, page 29 Error Status 21, page 29 22, page 29 30099 0098 Reserved 22, page 29 30100 0099 Temperature Units High 23, page 29 30101 0100 Temperature Units Low 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units Low 30106 0105 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30109 0108 Mass Units Low 30110 0109 Set New Device 28, page 29 Address 30200 199 Product Level High 2, Page 26 3, Page 27 30201 200 Product Level Low | 30048 | 0047 | | | | Word 30051 0050 Alarm/Status High Word 19, Page 27 Word 30052 0051 Alarm/Status Low Word 30053 0052 VCF Calculation Error Status 20, page 29 Status 21, page 29 Error Status 22, page 29 30055 - 0054 - Reserved 22, page 29 30100 0099 Temperature Units High 23, page 29 30101 0100 Temperature Units Low 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units Low 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 3, Page 27 30201 200 Product Level Low | 30049 | 0048 | | 18, Page 27 | | Word Sample Word Sample Sampl | 30050 | 0049 | | | | Word | 30051 | 0050 | | 19, Page 27 | | Status Status 30054 0053 Volume Calculation Error Status 21, page 29 30055 - 30099 0098 Reserved 22, page 29 30100 0099 Temperature Units High 23, page 29 30101 0100 Temperature Units Low 24, page 29 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 30201 200 Product Level Low | 30052 | 0051 | | | | Error Status 30055 - 0054 - Reserved 30100 0099 Temperature Units High 30101 0100 Temperature Units Low 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units Low 30107 0106 Length Units Low 30108 0107 Mass Units Low 30109 0108 Mass Units Low 30100 0109 Set New Device Address 30200 199 Product Level High Word (x1000) ‡ 30201 200 Product Level Low | 30053 | 0052 | | 20, page 29 | | 30099 0098 30100 0099 Temperature Units High 23, page 29 30101 0100 Temperature Units Low 24, page 29 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 30201 200 Product Level Low | 30054 | 0053 | | 21, page 29 | | High 30101 0100 Temperature Units Low 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device 28, page 29 Address 30200 199 Product Level High Word (x1000) ‡ 3, Page 27 30201 200 Product Level Low 30105 30106 | | | Reserved | 22, page 29 | | Low 30102 0101 Density Units High 24, page 29 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 30201 200 Product Level Low | 30100 | 0099 | | 23, page 29 | | 30103 0102 Density Units Low 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 year 30201 200 Product Level Low | 30101 | 0100 | • | | | 30104 0103 Volume Units High 25, page 29 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 27, page 29 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 30201 200 Product Level Low | 30102 | 0101 | | 24, page 29 | | 30105 0104 Volume Units Low 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 Word (x1000) ‡ 30201 200 Product Level Low | 30103 | 0102 | · | | | 30106 0105 Length Units High 26, page 29 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29
30200 199 Product Level High Word (x1000) ‡ 2, Page 26 years 30201 200 Product Level Low | | | | 25, page 29 | | 30107 0106 Length Units Low 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 Word (x1000) ‡ 30201 200 Product Level Low | | | | | | 30108 0107 Mass Units High 27, page 29 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 Word (x1000) ‡ 3, Page 27 30201 200 Product Level Low | | | • | 26, page 29 | | 30109 0108 Mass Units Low 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 3, Page 27 30201 200 Product Level Low | | | | | | 30110 0109 Set New Device Address 28, page 29 30200 199 Product Level High Word (x1000) ‡ 2, Page 26 3, Page 27 30201 200 Product Level Low | | | | 27, page 29 | | Address 30200 199 Product Level High 2, Page 26 Word (x1000) ‡ 3, Page 27 30201 200 Product Level Low | | | | | | Word (x1000) ‡ 3, Page 27
30201 200 Product Level Low | | | Address | | | | | | Word (x1000) ‡ | | | | 30201 | 200 | | | | Modbus | Data | Data Description
‡ denotes | Note | |-------------------|----------------|---|------------| | Register
30202 | Address
201 | duplicate register Interface Level High | Reference | | JULUL | | Word (x1000) ‡ | | | 30203 | 202 | Interface Level Low
Word (x1000) ‡ | | | 30204 | 203 | Roof Level High Word
(x1000) ‡ | Inactive | | 30205 | 204 | Roof Level Low Word (x1000) ‡ | Inactive | | 30206 | 205 | Temperature 1 High
Word (x10000) | 4, Page 27 | | 30207 | 206 | Temperature 1 Low
Word (x10000) | | | 30208 | 207 | Temperature 2 High
Word (x10000) | | | 30209 | 208 | Temperature 2 Low
Word (x10000) | | | 30210 | 209 | Temperature 3 High
Word (x10000) | | | 30211 | 210 | Temperature 3 Low
Word (x10000) | | | 30212 | 211 | Temperature 4 High
Word (x10000) | | | 30213 | 212 | Temperature 4 Low
Word (x10000) | | | 30214 | 213 | Temperature 5 High
Word (x10000) | | | 30215 | 214 | Temperature 5 Low
Word (x10000) | | | 30216 | 215 | Temperature 6 High
Word (x10000) | | | 30217 | 216 | Temperature 6 Low
Word (x10000) | | | 30218 | 217 | Temperature 7 High
Word (x10000) | | | 30219 | 218 | Temperature 7 Low
Word (x10000) | | | 30220 | 219 | Temperature 8 High
Word (x10000) | | | 30221 | 220 | Temperature 8 Low
Word (x10000) | | | 30222 | 221 | Temperature 9 High
Word (x10000) | | | 30223 | 222 | Temperature 9 Low
Word (x10000) | | | 30224 | 223 | Temperature 10 High
Word (x10000) | | | 30225 | 224 | Temperature 10 Low
Word (x10000) | | | 30226 | 225 | Temperature 11 High
Word (x10000) | | | 30227 | 226 | Temperature 11 Low
Word (x10000) | | | 30228 | 227 | Temperature 12 High
Word (x10000) | | | 30229 | 228 | Temperature 12 Low
Word (x10000) | | ## **DEVICE MODBUS REGISTER MAPS (CONTINUED)** | Modbus | Data | Data Description
‡ denotes | Note | |----------|---------|---|-------------| | Register | Address | duplicate register | Reference | | 30230 | 229 | Temperature Average
High Word (x10000) | 5, Page 27 | | 30231 | 230 | Temperature Average
Low Word (x10000) | | | 30232 | 231 | GOVP High Word ‡ | 6, Page 27 | | 30233 | 232 | GOVP Low Word ‡ | | | 30234 | 233 | GOVI High Word ‡ | 7, Page 27 | | 30235 | 234 | GOVI Low Word ‡ | | | 30236 | 235 | GOVT High Word ‡ | 8, Page 27 | | 30237 | 236 | GOVT Low Word ‡ | | | 30238 | 237 | GOVU High Word ‡ | 9, Page 27 | | 30239 | 238 | GOVU Low Word ‡ | | | 30240 | 239 | NSVP High Word ‡ | 10, Page 27 | | 30241 | 240 | NSVP Low Word ‡ | | | 30242 | 241 | MASS High Word ‡ | | | 30243 | 242 | MASS Low Word ‡ | | | 30244 | 243 | Temperature
Correction Method
High Word ‡ | 11, Page 27 | | 30245 | 244 | Temperature
Correction Method
Low Word ‡ | | | 30246 | 245 | API Gravity High
Word (x100) ‡ | | | 30247 | 246 | API Gravity Low Word (x100) ‡ | | | 30248 | 247 | Working Capacity
High Word (x10) ‡ | | | 30249 | 248 | Working Capacity Low
Word (x10) ‡ | | | 30250 | 249 | TEC High Word
(x10000000) ‡ | 12, Page 27 | | 30251 | 250 | TEC Low Word (x10000000) ‡ | | | 30252 | 251 | Density High Word
(x100) ‡ | 13, Page 27 | | 30253 | 252 | Density Low Word
(x100) ‡ | | | 30254 | 253 | Reference
Temperature High
Word (x10) ‡ | 14, Page 27 | | 30255 | 254 | Reference
Temperature Low
Word (x10) ‡ | | | 30256 | 255 | Volume Calculation
Mode High Word ‡ | 15, Page 27 | | 30257 | 256 | Volume Calculation
Mode Low Word ‡ | | | 30258 | 257 | Sphere Radius High
Word (x10) ‡ | 16, Page 27 | | Modbus
Register | Data
Address | Data Description
‡ denotes
duplicate register | Note
Reference | |--------------------|-----------------|---|-------------------| | 30259 | 258 | Sphere Radius Low
Word (x10) ‡ | | | 30260 | 259 | Sphere Offset High
Word (x10) ‡ | 17, Page 27 | | 30261 | 260 | Sphere Offset Low
Word (x10) ‡ | | | 30262 | 261 | Average Interval High
Word ‡ | 18, Page 27 | | 30263 | 262 | Average Interval Low
Word ‡ | | | 30264 | 263 | Alarm/Status High
Word ‡ | 19, Page 27 | | 30265 | 264 | Alarm/Status Low
Word ‡ | | | 30266 | 265 | VCF Calculation Error
Status ‡ | 20, page 28 | | 30267 | 266 | Volume Calculation
Error Status ‡ | 21, page 28 | | 30300 | 299 | Temperature Units
High ‡ | 23, page 28 | | 30301 | 300 | Temperature Units
Low ‡ | | | 30302 | 301 | Density Units High ‡ | 24, page 28 | | 30303 | 302 | Density Units Low ‡ | | | 30304 | 303 | Volume Units High ‡ | 25, page 28 | | 30305 | 304 | Volume Units Low ‡ | | | 30306 | 305 | Length Units High ‡ | 26, page 28 | | 30307 | 306 | Length Units Low ‡ | | | 30308 | 307 | Mass Units High ‡ | 27, Page 27 | | 30309 | 308 | Mass Units Low ‡ | | | 30310 | 309 | Set New Device
Address ‡ | 28, page 28 | | 31101 | 1100 | Tank offset High (x 10) | 29, page 28 | | 31102 | 1101 | Tank Offset Low
(x 10) | | | 31103 | 1102 | Calibrate Using
Current Product Level
High (x 1000) | 30, page 28 | | 31104 | 1103 | Calibrate Using
Current Product Level
Low (x 1000) | | | 31105 | 1104 | Calibrate Using
Current Interface
Level High (x 1000) | 31, page 28 | ## **Modbus User Interface** ## **DEVICE MODBUS REGISTER MAPS (CONTINUED)** | DEVICE IVI | טטטטט אבי | GISTER MAPS (CUNTIN | UED) | |--------------------|-----------------|--|-------------------| | Modbus
Register | Data
Address | Data Description
‡ denotes
duplicate register | Note
Reference | | 31106 | 1105 | Calibrate Using
Current Interface
Level Low (x 1000) | | | 31107 | 1106 | Calibrate Using
Current Roof Level
High (x 1000) | 32, Page 29 | | 31108 | 1107 | Calibrate Using
Current Roof Level
Low (x 1000) | | | 31109 | 1108 | Alarm Units High | 33, Page 29 | | 31110 | 1109 | Alarm Units Low | | | 31111 | 1110 | Interface High Alarm
High (x 100) | 34, Page 29 | | 31112 | 1111 | Interface High Alarm
Low (x 100) | | | 31113 | 1112 | Interface Low Alarm
High (x 100) | 35, Page 29 | | 31114 | 1113 | Interface Low Alarm
Low (x 100) | | | 31115 | 1114 | Product High Alarm
High (x 100) | 36, Page 29 | | 31116 | 1115 | Product High Alarm
Low (x 100) | | | 31117 | 1116 | Product Low Alarm
High (x 100) | 37, Page 29 | | 31118 | 1117 | Product Low Alarm
Low (x 100) | | | 31119 | 1118 | Roof High Alarm High (x 100) | 38, Page 29 | | 31120 | 1119 | Roof High Alarm Low (x 100) | | | 31121 | 1120 | Roof Low Alarm High (x 100) | 39, Page 29 | | 31122 | 1121 | Roof Low Alarm Low
(x 100) | | | 31123 | 1122 | Temperature Average
High Alarm High
(x 100) | 40, Page 29 | | 31124 | 1123 | Temperature Average
High Alarm Low
(x 100) | | | 31125 | 1124 | Temperature Average
Low Alarm High (x
100) | 41, Page 29 | | 31126 | 1125 | Temperature Average
Low Alarm Low
(x 100) | | | 31127–
31998 | 1126 –
1997 | Reserved | 22, page 28 | | 31999 | 1998 | Number Of Strap
Table Entries High | 42, Page 29 | | 32000 | 1999 | Number Of Strap
Table Entries Low | | | 32001 | 2000 | Strap Table Level 1
High (x 10000) | 43, Page 29 | | | | | | | | | Data Description | | |--------------------|-----------------|---|-------------------| | Modbus
Register | Data
Address | ‡ denotes
duplicate register | Note
Reference | | 32002 | 2001 | Strap Table Level 1
Low (x 10000) | | | 32003 | 2002 | Strap Table Level 2
High (x 10000) | | | 32004 | 2003 | Strap Table Level 2
Low (x 10000) | | | 32005 | 2004 | Strap Table Level 3
High (x 10000) | | | 32006 | 2005 | Strap Table Level 3
Low (x 10000) | | | | | | | | | | | | | | | | | | \ | \ | | | | 32199 | 2198 | Strap Table Level 100
High (x 10000) | 44, Page 29 | | 32200 | 2199 | Strap Table Level 100
Low (x 10000) | | | 32201 | 2200 | Strap Table Volume
1 High | 45, Page 29 | | 32202 | 2201 | Strap Table Volume
1 Low | | | 32203 | 2202 | Strap Table Volume
2 High | | | 32204 | 2203 | Strap Table Volume
2 Low | | | 32205 | 2204 | Strap Table Volume
3 High | | | 32206 | 2205 | Strap Table Volume
3 Low | | | | | | | | | | | | | | | | | | \ | \ | | | | 32399 | 2398 | Strap Table Volume
100 High (x 10000) | 46, Page 29 | | 32400 | 2399 | Strap Table Volume
100 Low (x 10000) | | | 32401 -
34998 | 2400 -
4997 | Reserved | | | 34999 | 4998 | Number Of VCF Table
Entries High | 47, Page 29 | | 35000 | 4999 | Number Of VCF Table
Entries Low | | | 35001 | 5000 | VCF Table Tempera-
ture 1 High (x 10000) | 48, Page 29 | | 35002 | 5001 | VCF Table Tempera-
ture 1 Low (x 10000) | | | 35003 | 5002 |
VCF Table Tempera-
ture 2 High (x 10000) | | #### **DEVICE MODBUS REGISTER MAPS (CONTINUED)** | Modbus
Register | Data
Address | Data Description ‡ denotes duplicate register | Note
Reference | |--------------------|-----------------|---|-------------------| | 35004 | 5003 | VCF Table Tempera-
ture 2 Low (x 10000) | | | 35005 | 5004 | VCF Table Tempera-
ture 3 High (x 10000) | | | 35006 | 5005 | VCF Table Tempera-
ture 3 Low (x 10000) | | | | | | | | | | | | | | | | | | \ | \ | | | | 35099 | 5098 | VCF Table Tempera-
ture 50 High
(x 10000) | 49, page 30 | | 35100 | 5099 | VCF Table Tempera-
ture 50 Low (x 10000) | | | 35101 | 5100 | VCF Table Correction
1 High (x 10000) | 50, page 30 | | Modbus
Register | Data
Address | Data Description
‡ denotes
duplicate register | Note
Reference | |--------------------|-----------------|---|-------------------| | 35102 | 5101 | VCF Table Correction
1 Low (x 10000) | | | 35103 | 5102 | VCF Table Correction
2 High (x 10000) | | | 35104 | 5103 | VCF Table Correction
2 Low (x 10000) | | | 35105 | 5104 | VCF Table Correction
3 High (x 10000) | | | 35106 | 5105 | VCF Table Correction
3 Low (x 10000) | | | | | | | | | | | | | | | | | | \ | \ | | | | 35199 | 5198 | VCF Table Correction
50 High (x 10000) | 51, page 30 | | 35200 | 5199 | VCF Table Correction
50 Low (x 10000) | | #### SPECIAL/ADVANCED DIAGNOSTIC REGISTER MAPS | Modbus
Register | Data
Address | Data Description | Note
Reference | |--------------------|-----------------|--|-------------------| | 35201 | 5200 | Num_Lineariztion_
Entries_Hi
Num_Lineariztion_
Entries_Lo | | | 35203 | 5202 -
5999 | Lintable_Level1_Hi
Lintable_Level1_Lo | | | 35601 | 5600 | Lintable_Level200_Hi
Lintable_Level200_Lo | | | 35603 | 5602 -
5999 | Lintable_Error1_Hi
Lintable_Error1_Lo | | | Modbus
Register | Data
Address | Data Description | Note
Reference | |--------------------|-----------------|--|-------------------| | 36001 | 6000 | Lintable_Error200_Hi
Lintable_Error200_Lo | | | 36003 | 6002 -
6399 | Lintable_Slope1_Hi
Lintable_Slope1_Lo | | | 36401 | 6400 | Lintable_Slope200_Hi
Lintable_Slope200_Lo | | #### **HOW UNITS ARE USED** Registers that are read or preset are done so using the current unit type's programmed unit. #### For example: If the current unit type is 'Length' and you currently have selected 'Feet' as your unit, then the value returned will be in that unit. Make sure the value programmed is also done so using that unit. #### **MODBUS REGISTER MAP NOTE REFERENCES** All registers can be accessed using either Modbus Function 03 (Read Holding Registers) or Modbus Function 04 (Read Input Registers). However, all registers are read-only in this implementation. For example: Registers 30001 and 30002 (using Function 03) can also be read as registers 40001 and 40002 (using Function 04). 2. Pairs of registers identified as 'High Word' and 'Low Word' must be read together reading the 'High Word" first. Both values need to be concatenated by the master to form a 32-bit unsigned 'long word' quantity. #### For example: Register 30001 (16-bit high word) = 0002H (Must be read first) Register 30002 (16-bit low word) = 3F8CH Long word (32-bit) = 00023F8CH (decimal 147340) Or: Register 30001 (high word) = 2 Register 30002 (low word) = 16268 Multiply register $30001 \times 65536 : 2 \times 65536 = 131072$ Add result to register 30002 : 131072 + 16268 = 147340 #### Modbus User Interface #### **DEVICE MODBUS REGISTER MAPS (CONTINUED)** All registers identified as '(x 10)','(x 100)', '(x 10000)',' (x 100000000)' or '(x 1000)' have been scaled (multiplied) by a factor of 10, 100, 1000, 10000 or 10000000 before transmission to preserve the fractional portion of the data value. The master must divide these values by the scale factor as necessary. #### For example: Register 30001 (16-bit high word) = 0002H Long word (32-bit) = 00023F8CH (decimal 147340) Divide by 1000, actual value = 147.340 #### 4. Individual digital temperature - 5. Average submerged temperature - 6. **GOVP** = Gross Observed Volume Product - 7. **GOVI** = Gross Observed Volume Interface - 8. **GOVT** = Gross Observed Volume Total - 9. **GOVU** = Gross Observed Volume Ullage - 10. **NSVP** = Net Standard Volume of Product #### 11. Temperature Correction Method There are five methods to choose from: - 1 = (6A) Heavy Oils - 2 = (6B) Light Oils - 3 = (6C) Chemicals - 4 = Chemicals with wider coefficients than *6C* and a movable reference temperature (*6C Mod*). - 5 = Custom Table. #### 12. Thermal Expansion Coefficient (TEC) Temperature correction method '6C' uses the thermal expansion coefficient of the product being measured to determine the volume correction factor. Allowable values are 270.0 to 930.0. TEC Units are in 10E-6/Deg F. #### 13. Density Temperature correction method '6C' and 'Custom Table' requires you to enter the density (at the given reference temperature) of the product being measured for the net mass calculation. #### 14. Reference Temperature This is the desired base temperature for the VCF calculation when Temperature Correction Method '6C Mod' is used. #### 15. Volume Calculation Mode This is the mode you wish the volume calculations to be performed by: - 1 = Use Strap Table - 0 = Use Sphere Calculation #### 16. Sphere Radius The radius of the sphere when volume calculations are performed (using the sphere calculation mode). #### 17. Sphere Offset The offset of the sphere when volume calculations are performed (using the sphere calculation mode). #### 18. Average Interval All level, temperature and volume calculation can be averaged using timed method. Allowable values are as follows: - 0 = 1 second (default) - 5 = 5 seconds - 10 = 10 seconds - 15 = 15 seconds - 20 = 20 seconds - 25 = 25 seconds - 30 = 30 seconds - 35 = 35 seconds 40 = 40 seconds - 45 = 45 seconds - TO TO SCOULING - 50 = 50 seconds - 55 = 55 seconds - 60 = 60 seconds #### 19. Alarm/Status bit definitions: - D1 Interface Alarm High - D2 Interface Alarm Low - D3 Product Alarm High - D4 Product Alarm Low - D5 Roof Alarm High - D6 Roof Alarm Low - D7 Average Temperature Alarm High - D8 Average Temperature Alarm Low - D9 Magnet Is Missing - D10 Digital Temperature 0 Error - D11 Digital Temperature 1 Error - D12 Digital Temperature 2 Error - D13 Digital Temperature 3 Error - D14 Digital Temperature 4 Error - D15 Digital Temperature Average Error - D16 D32 Reserved For each corresponding alarm bit: - 0 = ALARM OFF - 1 = ALARM ON - Reserved bits will always be set to 0 (OFF). # Aodbus User Interface #### **DEVICE MODBUS REGISTER MAPS (CONTINUED)** #### 20. Volume Correction Factor Calculation Error Status. This value can only be read. If there is no error performing the volume correction factor then the value is zero otherwise, the value is a non-zero code and one of the following: - 1 = Invalid API value or invalid temperature input value for 6A or 6B VCF calculation. - 2 = Invalid API value or invalid temperature input range for 6A VCF calculation. - 3 = Invalid API value or invalid temperature input range for 6B VCF calculation. - 4 = Invalid API value or invalid temperature input value for 6C VCF calculation. - 5 = Invalid API value or invalid temperature range for 6C VCF calculation. - 6 = Invalid API value or invalid temperature range for 6C Wide VCF calculation. - 7 = Invalid delta temperature for 6C VCF calculation. - 8 = Interpolation error, temperature value not found in the table. - 9 = Invalid or No VCF method selected. #### 21. Volume Calculation Error Status This value can only be read. If there is no error performing the volume calculations then the value is zero otherwise the value Is a non-zero code and one of the following: - 1 = Negative table entries are not allowed. - 2 = Interpolation error, level value not found in the table. - 3 = Sphere Calculation error, level exceeds sphere radius x 2. - 4 = Calculated a negative volume value. # 22. **Undefined or reserved registers within the register map** will return a maximum negative value (8000H, or 80000000H for register pairs). Attempting to read registers outside the register map (35198 or higher) will cause a Modbus Exception Error Code 02 (Illegal Data Value) to be returned. #### 23. Temperature Units The value for temperature units can be one of the following codes: - 0 = Celsius - 1 = Fahrenheit #### 24. Density Units High The value for density units can be one of the following codes: - 0 = Grams/Milliliters - 1 = Grams/Liter - 2 = Kilograms/Cubic Meters - 3 = Kilograms/Liter - 4 = Pounds/Cubic Inch - 5 = Pounds/Cubic Foot - 6 = Pounds/Gallon - 7 = Tonnes/Cubic Meter - 8 = Tons/Cubic Yard MTS Sensors #### 25. Volume Units The value for volume units can be one of the following codes: - 0 = Liters - 1 = Cubic Millimeters - 2 = Cubic Meters - 3 = Cubic Inches - 4 = Cubic Feet - 5 = Gallons - 6 = Barrels #### 26. Length Units The value for length units can be one of the following codes: - 0 = Millimeters - 1 = Centimeters - 2 = Meters - 3 = Kilometers - 4 = Inches - 5 = Feet - 6 = Yards #### 27. Mass Units The value for mass units can be one of the following codes: - 0 = Kilograms - 1 = Grams - 2 = Ounces - 3 = Pounds - 4 = Tons - 5 = Tonnes #### 28. Set New Device Address This register will program the new device address. Valid values for *Modbus* are between: 1 - 247. #### 29. Tank Offset This is the value that will be added or subtracted from the level measurements. This allows the tank level reading to be calibrated to the users hand gauged tank reading (or other reference guide). (See notes 30, 31 and 32) for more information. #### 30. Calibrate Using Current Product Level This
is used to calibrate the level measurements. This allows the user to enter the hand gauged tank reading (or other level reference guide) of the Product and the device will calculate the necessary calibration offset. The calculated value will then be stored as the '*Tank Offset*'. (*See note 29*) #### 31. Calibrate Using Current Interface Level This is used to calibrate the level measurements. This allows the user to enter the hand gauged tank reading (or other level reference guide) of the Interface and the device will calculate the necessary calibration offset. The calculated value will then be stored as the 'Tank Offset'. (See note 29) #### **Modbus User Interface** #### **DEVICE MODBUS REGISTER MAPS (CONTINUED)** #### 32. Calibrate Using Current Roof Level This is used to calibrate the level measurements. This allows the user to enter the hand gauged tank reading (or other level reference guide) of the Roof and the device will calculate the necessary calibration offset. The calculated value will then be stored as the 'Tank Offset'. (See note 29) #### 33. Alarm Units This register programs the unit type for which you can configure alarms. Product and Interface can be 'Volume or 'Length' unit type, however Roof can only be 'Length' unit type. Valid Values are as follows: - 2 = Volume Units Type. - 3 = Length Units Type. #### 34. Interface High Alarm The value for which the Interface cannot be >=. Make sure the value is programmed in the current Alarm Units type. (See Note 33) #### 35. Interface Low Alarm The value for which the Interface cannot be <=. Make sure the value is programmed in the current Alarm Units type. (See Note 33) #### 36. Product High Alarm The value for which the Product cannot be >=. Make sure the value is programmed in the current Alarm Units type. (See Note 33) #### 37. Product Low Alarm The value for which the Product cannot be <=. Make sure the value is programmed in the current Alarm Units type. (See Note 33) #### 38. Roof High Alarm The value for which the Roof cannot be >=. This value can only be in unit type of Length. (See Note 33) #### 39. Roof Low Alarm The value for which the Roof cannot be <=. This value can only be in unit type of Length. (See Note 33) #### 40. Temperature Average High Alarm The value for which the Average Temperature cannot be >=. #### 41. Temperature Average Low Alarm The value for which the Average Temperature cannot be <=. #### 42. Number Of Strap Table Entries This value specifies the number of strap table entries to be used in the tank-strapping table. Table sizes can range from 2 to 100 entries. #### 43. Strap Table Level 1 This is the register for the first strap table level value entry. Each register can be accessed individually (but programmed in pairs) using the following formula: Strap Table Level 1 High + ((Desired Entry #) * 2) - 2. For example, if you wanted to program the 50th table entry: 32000 + ((50 * 2) - 2) = 32098. You can program the entire table by setting the strap table Level 1 High register (32000) as your first register and a length of 100 using Modbus Function 16. You could also use Modbus Function 6 to program a single register pair. #### 44. Strap Table Level 100 This is the register for the last strap table Level value entry. (See note 43) for details. #### 45. Strap Table Volume 1 This is the register for the first strap table volume value entry. Each register can be accessed individually (but programmed in pairs) using the following formula: Strap Table Volume 1 High + ((Desired Entry #) * 2) – 2 For example, If you wanted to program the 50th table entry: 32200 + ((50 * 2) - 2) = 32298. You can program the entire table by providing the strap Table Volume 1 High register (32000) as your first register and a length of 100 using Modbus Function 16. You could also use Modbus Function 6 to program a single register pair. #### 46. Strap Table Volume 100 This is the register for the last strap table Volume value entry. (See note 45) for details. #### 47. Number of VCF Table Entries This value specifies the number of VCF table entries to be used in the volume correction factor table. Table sizes can range from 2 to 50 entries. #### 48. VCF Table Temperature 1 This is the register for the first VCF table Temperature value entry. Each register can be accessed individually (but programmed in pairs) using the following formula: VCF table Temperature 1 High + ((Desired Entry #) *2) – 2. For example, if you wanted to program the 25th table entry: 35000 + ((25 * 2) - 2) = 35048. You can program the entire table by providing the VCF table Temperature 1 High register (35000) as your first register and a length of 50 using Modbus Function 16. You could also use Modbus Function 6 to program a single register pair. #### 49. VCF Table Temperature 50 This is the register for the last VCF table Temperature value entry. (See note 48) for more information. #### 50. VCF Table Correction 1 This is the register for the first VCF table Correction value entry. Each register can be accessed individually (but programmed in pairs) using the following formula: VCF table Correction 1 High + ((Enter Entry #) * 2) – 2. For example, if you wanted to program the 25th table entry: 35100 + ((25 * 2) - 2) = 35148. You can program the entire table by providing the VCF table Correction 1 High register (35100) as your first register and a length of 50 using Modbus Function 16. You could also use Modbus Function 6 to program a single register pair. #### 51. VCF Table Correction 50 This is the register for the last VCF table Correction value entry. (*See note 50*) for more information. ### Formulas used in volume calculation 1. GOVP = GOVT - GOVI (two float system) **GOVP = GOVT** (one float system) **GOVT= GOVP + GOVI** (two float system) **GOVT= GOVP** (one float system) **GOVU = WORKING CAPACITY - GOVT** (one or two float system) The gross observed volume of the product (*GOVP*) is equal to the total volume of the tank (*GOVT*) minus the interface volume (*GOVI*). The GOVT is measured by the product float (the float closest to the flange of the transmitter) and the GOVI is measured by the interface float (the float closest to the tip of the transmitter). The level information from the transmitter is used along with the strap table to calculate the corresponding gross observed volumes. #### 2. NSVP = GOVP x VCF The net standard volume of the product (*NSVP*) is equal to the gross observed volume of the product (*GOVP*) multiplied by the volume correction factor (*VCF*). The VCF is calculated from thermal expansion properties of the product (programmed by the user) and the temperature information from the gauge. (see *4. VOLUME CORRECTION FACTOR*) for details. #### 3. MASS = NSVP x DENSITY The mass of the product (MASS) is equal to the net standard volume of the product (NSVP) multiplied by the density of the product (DENSITY) programmed by the user. #### 4. VOLUME CORRECTION FACTOR $VCF = EXP \{-A(T) \times (t-T) \times [1 + (0.8 \times A(T) \times (t-T))]\}$ #### Where: t = any temperature* T = BASE TEMPERATURE (60 DEGREES F) A(T) = coefficient of thermal expansion at the base temperature T #### Where: EXP is the exponential function (e^x). The coefficient of thermal expansion at the base temperature is related to the density of the product at the base temperature T by: $$A(T) = [K0 + K1 \times DEN(T)] / [DEN(T) \times DEN(T)]$$ #### Where: Density is defined in units of KG/M^3 K0 and K1 are constants related to each product. *API 2540 states that temperature data is rounded to the nearest tenth (0.1) degree. This section includes all the constants used by the software to calculate the volume correction factors and valid ranges for the API (density) and temperature data. | Constants: | K0 = 341.0957 | | |-------------------------|---------------|----------------------------| | | K1 = 0.0 | | | Valid temperature range | | Valid gravity ranges (API) | | 0 to +300.0 °F | | 0 to 40.0 °API | | 0 to +250.0 °F | | 40.1 to 50.0 °API | | 0 to +200.0 °F | | 50.1 to 100.0 °API | Table 5. 6A heavy oils #### **Modbus User Interface** # FORMULAS USED IN VOLUME CALCULATIONS (CONTINUED) | Product type Constants | | Valid gravity range
(API) | |--|---------------------------------------|------------------------------| | Fuel oil | Fuel oil K0 = 103.8720
K1 = 0.2701 | | | Jet group K0 = 330.3010
K1 = 0.0 | | 37.1 to 47.9 °API | | Transition group K0 = 1489.0670
K1 = -0.0018684 | | 48.0 to 52.0 °API | | Gasoline K0 = 192.4571
K1 = 0.2438 | | 52.1 to 85.0 °API | | Valid temperature ranges | | Valid TEC ranges | | 0 to +300.0 °F | | 0 to 40.0 °API | | 0 to +250.0 °F | | 40.1 to 50.0 °API | | 0 to +200.0 °F | | 50.1 to 85.0 °API | | | | | Table 6. 6B light oils | Valid temperature range | Valid TEC ranges | |-------------------------|----------------------------| | 0 to +300.0 °F | 270.0 to 510.0 * 10E-6/ °F | | 0 to +250.0 °F | 510.5 to 530.0 * 10E-6/ °F | | 0 to +200.0 °F | 530.5 to 930.0 * 10E-6/ °F | ^{*}For the transition group, $A(T) = [K1 + K0 (DEN (T) \times DEN (T))]$ **TEC is the thermal expansion coefficient of the product being measured Table 7. 6C chemicals | Valid temperature range | Valid TEC ranges | |-------------------------|----------------------------| | 0 to +300.0 °F | 100.0 to 999.0 * 10E-6/ °F | ^{*}For the transition group, $A(T) = [K1 + K0 (DEN (T) \times DEN (T))]$ Table 8. 6C MOD #### Note: Volumetric modes 6C MOD and CUST TAB are not intended for custody transfer applications since they do not follow API standard 2540 exactly. The software for 6C MOD incorporates a moveable terperature reference and allows for a wider range of TEC values. # **Installing the M-Series Digital Setup Software** Adjustments to the calibration and set up parameters of the transmitter can be performed using the M-Series Digital Setup Software package. The software can be run from any PC using a RS-485 to RS-232
converter (*See Table 9 MTS part number references*). In the 'MTS Digital Gauge Configuration - Modbus -COM' window, you will see two tabs labeled 'Data From Device' (see Figure 14) on page 32 and 'Volume Calculations' (see Figure 15 on page 32). You will use these tabs to calibrate the transmitter and change setup parameters. #### Note: You must use a RS-485 converter with 'Send Data Control' when using the M-Series Digital Setup software to ensure proper operation. Example: B & B Electronics 485BAT3 (815-433-5100 www.bb-elec.com). | M-Series PC Digital Se | etup Software (Modbus) | |------------------------|------------------------| | CD and RS-485 to RS-2 | 232 converter ` | Order number: 625051 M-Series PC Digital Setup Software (Modbus) CD Order number: 625052 RS-485 to RS-232 converter Order number: 380075 **Table 9.** MTS part number references Perform the following steps to install the transmitter setup software to establish communications with the transmitter: - 1. Install Setup Software from the CD that came with your transmitter or go to www.mtssensors.com to download the latest version. - 2. Connect transmitter to the RS-485 to RS-232 converter and attach the converter to your PC. Some PC's will require an additional Serial to USB converter. - 3. Open the Software program. - 4. Select COM Port. If you do not know which COM port to select, right click My Computer and select Properties -> Hardware Tab -> Device Manager -> Ports (COM & LPT) to view the list. - 5. Click the Device: pull-down window and select the 'transmitter address', the factory default for Modbus is 247. ## **INSTALLING THE SETUP SOFTWARE (CONTINUED)** Figure 14. Data From Device tab window Figure 15. Volume Calculations tab window # Setting up and calibrating the Model MG digital transmitter Pages 32 to 36 contain the following software parameter information for both 'Data From Device' and 'Volume Calculations' tabs: #### **DATA FROM DEVICE PARAMETERS:** - Units - Alarms - Offset - Address - Backup/Restore File - Adjust - COM Port - Continuous Update - Data Logging #### **DATA FROM DEVICE TAB** #### Units To change Unit parameters, click the 'Units' button in the 'Data From Device' tab window. In the 'Select Units' window (See Figure 16) you can update units of measurement for length, temperature, volume, mass and density can be changed by selecting the appropriate parameter in the drop down menu, then click 'Send'. A confirmation popup window confirms the send is successful. Figure 16. Select Units window # **VOLUME CALCULATIONS PARAMETERS:** - Correction Method - API Gravity - Thermal Expansion Coefficient (TEC) • - Reference Temperature - · Density - Volume Correction Factor (VCF) - · Volume Calculation Mode - Sphere Radius - · Sphere Offset - Working CapacityAverage Readings - Strap Table #### **Alarms** To set the Alarms, select the 'Alarms' button in the 'Data From Device' tab window. A high and low alarm is offered for the product, interface, and average temperature and can be set to either length units or volume units from the pull down menu (See Figure 17). Each alarm needs to be checked and entered before you click the 'Send' button. A confirmation popup window confirms the send is successful. Figure 17. Alarm Configuration window #### **Modbus User Interface** #### **DATA FROM DEVICE TAB (CONTINUED)** #### Calibration When you click the 'Offset' button in the 'Data From Device' tab window, the 'Offsets' window opens. There are two calibration 'Offset Methods' to choose from, 'Enter Current Tank Level' and 'Enter Level Offset'. Click to open the 'Offset Method:' drop down menu and select a calibration method. Choose either method 'Enter Current Tank Level' or 'Enter Current Interface Level' and type a value in the active field, then click the 'Send' button. A confirmation popup window confirms the send is successful. Figure 18. Offsets window - Enter Current Tank Level When you choose **Enter Level Offset**' from the 'Offset Method:' drop down menu, you can adjust the offset where the transmitters zero point is located. This adjustment will significantly shorten the span of the transmitter or counter inactive zones. Adjust the value accordingly and click '**Send**'. A confirmation popup window confirms the send is successful. Figure 19. Offsets window - Enter Level Offset method #### Address To change the transmitter address, click the 'Address' button in the 'Data From Device' tab window. In the 'Change Address' window, type the 'New Address' in the active field and click 'Send'. A confirmation popup window confirms the send is successful. Figure 20. Change Address window - New Address entry #### **Backup / Restore File** If your electronics requires a replacement or if your current settings need to be refreshed, it is recommended that you create a backup or restoration file. To create a backup, click the 'Backup/Restore' button in the 'Data From Device' tab window. In the 'Backup and Restore Device Settings' window, click the 'Get Data From Sensor' button and 'Save Settings to File' button. When prompted, save the file to a designated place where you can find it. To upload a file, click the 'Read Settings from File' button and select your backup file. Click 'Write Data to Sensor'. A confirmation popup window confirms the upload is successful. Figure 21. Backup and Restore Device Settings window #### Adjust To adjust the Gain, click the 'Adjust' button located in the 'Data From Device' tab window. The 'Modbus Adjust Gain' window displays different parameter settings depending on the firmware of the transmitter. All transmitters will have the ability to adjust the 'Gain' from this menu. Other transmitters will have the ability to adjust the gain, and display the following; magnet blanking, delta, and blanking reference. None of these parameters should be changed without MTS Technical Support and are password protected. ~mtsdda~ Figure 22. Modbus Adjust Gain window #### **DATA FROM DEVICE TAB (CONTINUED)** #### **COM Port** To select the Setup Software communication port, click the 'COM Port' button in the 'Data From Device' tab window. Select the appropriate communication port and click 'OK'. Figure 23. Select a COM Port window # Volume Calculations tab # Data Logging **Continuous Update** updates but is not necessary. To download a transmitter data log, Click 'Select File' in the 'Data From Device' tab window. Select an Excel file and check the 'Log Data to File' box to save your data. To view realtime data using the Setup Software interface, select the 'Continuous Update' box. The Interval may be changed to slow down #### Note: As a first step always press the '**Read**' button to determine the transmitter's current configuration. After editing any parameters always press the '**Write**' button to program the transmitter. #### **Correction Method** The correction method is selected by clicking the pull down menu and selecting the appropriate correction method. Available selections include 6A (Heavy Oils), 6B (Light Oils), 6C (Chemical), 6C Mod, Custom Table, and Disabled. If *'Custom Table'* is chosen, you must click **'Volume Correction Factor Table'** and enter the table. #### **API Gravity** Enter the 'API gravity' (normalized density) value for the product being measured in the applicable field. Allowable values are: 6A - 0.0 deg to 100.0 deg API 6B - 0.0 deg to 85.0 deg API #### **TEC (Thermal Expansion Coefficient)** Temperature Correction Method '6C' uses the thermal expansion coefficient of the product being measured to determine the volume correction factor. Allowable values are 270.0 to 930.0. TEC units are in 10 E-6/deg F. In the 'TEC (6C)' field, enter the appropriate value. #### **Reference Temperature** When selecting correction method 6C Mod you will need to enter the desired base temperature for the volume calculations in the 'Reference Temperature' field. The allowable values are 32 deg F to 150 deg F. #### Density Entering a density is required when using Temperature Correction Method '6C' or 'Custom Table' for net mass calculations. The density measurement should be entered as 'LB/cu.ft'. at the given reference temperature. #### **Volume Correction Factor Table** When Custom Table is chosen as the temperature correction method the user has to enter the volume correction factor table. The table will hold up to 50 entries of temperature points and correction factors. Once the file is created it can be saved to a file and kept on a computer for safe keeping or transferred to multiple transmitters. Before closing the user must click 'Send' to send the VCF table to the transmitter. Figure 24. Volume Correction Factor Table window #### **Volume Calculation Mode** Select between 'Use Sphere' and 'Use Strap Table' as the volume calculation mode. ## Sphere Radius Enter the radius of the sphere the transmitter is mounted in. #### **Sphere Offset** In the 'Sphere Offset' field, enter the 'sphere offset parameter' which is used to add or subtract a fixed volume from the calculated sphere volume. This parameter is typically used to account for volume errors created by non-uniform sphere geometry (i.e. Flat bottoms or internal structures) #### **Modbus User Interface** # **VOLUME CALCULATIONS TAB (CONTINUED)** #### **Working Capacity** In the working capacity field, enter the volume of safe fill level using the same units defined in the strap table. to calculate Gross Observed Volume Ullage (GOVU). ### **Average Readings** In the 'Average Ratings' pull-down menu, select from preset averaging for the data being calculated. Selections are available from 5 to 60 seconds. #### Strap Table When selecting the 'Use Strap Table' volume calculation mode the user must enter a strap table. The model MG with Modbus is capable of handling a 100 point strap table. To enter a strap table click 'Strap Table' and click 'Add' to start entering each volume and distance point. Once the strap table is entered save a copy to your PC
by clicking 'Write to File.' Before closing the user must click 'Send' to send the strap table to the transmitter. Straptable default password is 'becareful'. # FOUNDATION™ fieldbus interface FOUNDATION™ fieldbus is an open, integrated total architecture for information integration that is an all digital, two way communication system. A differentiator for FOUNDATION™ fieldbus is it's built in capability to distribute the control application across the network. The model MG transmitter interfaces via H1 that interconnects field devices at 31.25 kbit/s. The H1 FOUNDATION™ Fieldbus retains and optimizes the desirable features of the 4 to 20 mA analog system such as: - · Single loop integrity - · A standardized physical interface to the wire - · Bus-powered devices on a single wire pair - · Intrinsic safety options # **Device description** The Device Description (DD) file provides information needed for a control system or host to understand the meaning of the data from the field device. DD files are platform and operating system independent so any control system or host can operate a device if it has the device's DD files. The DD files are similar to the drivers that a PC uses to operate printers, USB's, and other devices. Current DD files are available for download from http://www.fieldbus.org. ## Transducer block The model MG transmitter contains two transducers blocks: *Setup* and *Factory*. All of the information and functions needed to setup, calibrate, and troubleshoot the model MG are located in the transducer blocks. Please contact Technical Support for help before changing parameters in the transducer blocks. Some of the parameters are password protected for the end users' benefit. | SETUP 1 | TRANSDUCER BLOCK | | |---------|----------------------|-------------| | Index | Parameter mnemonic | Description | | 1 | ST_REV | | | 2 | TAG_DESC | | | 3 | STRATEGY | | | 4 | ALERT_KEY | | | 5 | MODE_BLK | | | 6 | BLOCK_ERR | | | 7 | UPDATE_EVT | | | 8 | BLOCK_ALM | | | 9 | TRANDUCER_DIRECTORY | | | 10 | TRANSDUCER_TYPE | | | 11 | XD_ERROR | | | 12 | COLLECTION_DIRECTORY | | | SETUP TRANSDUCER BLOCK | | | | |------------------------|--|--|--| | Index | Parameter mnemonic | Description | | | Dynamic | Dynamic variables (Setup transducer block) | | | | 13 | PRODUCT_LEVEL_AI | Output Level 1 (Product) | | | 14 | INTERFACE_LEVEL_AI | Output Level 2 (Interface) | | | 15 | AVERAGE_TEMPERATURE | Output Average Temp
of submersed DTs
(Temperature sensors) | | | 16 | NSVP | NSVP = GOVP x
VCF(Volume Correction
Factor) | | | 17 | GOVP | GOVP = Total Volume -
Interface Volume | | | 18 | GOVI | GOVI = Interface Volume | | | 20 | TEMPERATURE1 | DT 1
(Temperature sensor 1) | | | 21 | TEMPERATURE2 | DT 2
(Temperature sensor 2) | | | 22 | TEMPERATURE3 | DT 3
(Temperature sensor 3) | | | 23 | TEMPERATURE4 | DT 4
(Temperature sensor 4) | | | 24 | TEMPERATURE5 | DT 5
(Temperature sensor 5) | | | 25 | GOVT | GOVT = GOVP - GOVI | | | 26 | GOVU | GOVU = Working capacity - GOVT | | | 27 | MASS | MASS = NSVP x Density | | # FOUNDATION™ fieldbus User Interface | choose from: 1 = Heavy Oils 2 = Light Oils 3 = Chemicals with wider coefficients than 6C and a movable reference temperature 5 = custom table 29 API_GRAVITY Normalized Density value 30 WORKING_CAPACITY Working capacity of tank 31 TEC Thermal correction method 6C uses the thermal expansion coefficient of the product being measured to determine the volume co rection factor. Allowable values are 270.0 to 930.0 TEC Units. TEC Units are in 10E-6/DegF. 32 DENSITY Temperature correction method 6C and "custom table" requires you to enter the density (at a given reference temperature) of the product being measured. 33 REF_TEMPERATURE This is the desired base temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. 34 VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | SETUP TRANSDUCER BLOCK | | | |---|------------------------|-------------------------------|--| | TEMP_CORR_METHOD There are five methods to choose from: 1 = Heavy Oils 2 = Light Oils 3 = Chemicals with wider coefficients than 6C and a movable reference temperature 5 = custom table Parameter of the product being measured to determine the volume corection factor. Allowable values are 270.0 to 930.0 TEC Units. TEC Units are in 10E-6/DegF. DENSITY Temperature correction method 6C and "custom table" requires you to enter the density (at a given reference temperature) of the product being measured. REF_TEMPERATURE This is the desired base temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | Index | Parameter mnemonic | Description | | choose from: 1 = Heavy Oils 2 = Light Oils 3 = Chemicals with wider coefficients than 6C and a movable reference temperature 5 = custom table 29 API_GRAVITY Normalized Density value 30 WORKING_CAPACITY Working capacity of tank 31 TEC Thermal correction method 6C uses the thermal expansion coefficient of the product being measured to determine the volume co rection factor. Allowable values are 270.0 to 930.0 TEC Units. TEC Units are in 10E-6/DegF. 32 DENSITY Temperature correction method 6C and "custom table" requires you to enter the density (at a given reference temperature) of the product being measured. 33 REF_TEMPERATURE This is the desired base temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. 34 VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | Setup pa | arameters (Setup transducer b | lock) | | WORKING_CAPACITY Working capacity of tank TEC Thermal correction method 6C uses the thermal expansion coefficient of the product being measured to determine the volume co rection factor. Allowable values are 270.0 to 930.0 TEC Units. TEC Units are in 10E-6/DegF. DENSITY Temperature correction method 6C and "custom table" requires you to enter the density (at a given reference temperature) of the product being measured. REF_TEMPERATURE This is the desired base temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | 28 | TEMP_CORR_METHOD | 1 = Heavy Oils 2 = Light Oils 3 = Chemicals 4 = Chemicals with wider coefficients than 6C and a movable reference temperature | | Thermal correction method 6C uses the thermal expansion coefficient of the product being measured to determine the volume co rection factor. Allowable values are 270.0 to 930.0 TEC Units. TEC Units are in 10E-6/DegF. Temperature correction method 6C and "custom table" requires you to enter the density (at a given reference temperature) of the product being measured. This is the desired base temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | 29 | API_GRAVITY | Normalized Density value | | method 6C uses the thermal expansion coefficient of the product being measured to determine the volume co rection factor. Allowable values are 270.0 to 930.0 TEC Units. TEC Units are in 10E-6/DegF. Temperature correction method 6C and "custom table" requires you to enter the density (at a given reference temperature) of the product being measured. This is the desired base temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | 30 | WORKING_CAPACITY | Working capacity of tank | | method 6C and "custom table" requires you to enter the density (at a given reference temperature) of the product being measured. 33 REF_TEMPERATURE This is the desired base temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. 34 VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | 31 | TEC | method 6C uses the thermal expansion coefficient of the product being measured to determine the volume correction factor. Allowable values are 270.0 to 930.0 TEC Units. TEC | | temperature for the VCF calculation when Temperature Correction Method 4 (6C Wide) is used. 34 VOL_CALC_MODE This is the mode you wis the volume calculations to be performed by: 1 = Use Strap Table 0 = Use Sphere Calcula- | 32 | DENSITY | method 6C and
"custom
table" requires you to
enter the density
(at a given reference | | the volume calculations t
be performed by:
1 = Use Strap Table
0 = Use Sphere Calcula- | 33 | REF_TEMPERATURE | temperature for the
VCF calculation when
Temperature
Correction Method 4 (6C | | lions | 34 | VOL_CALC_MODE | 1 = Use Strap Table | | 35 SPHERE_RADIUS The radius of the sphere when volume calculation are performed (using the sphere calculation mode). | 35 | SPHERE_RADIUS | when volume calculations are performed (using the sphere | | 36 SPHERE_OFFSET The offset of the sphere when volume calculation are performed (using the sphere calculation mode). | 36 | SPHERE_OFFSET | when volume calculations are performed (using the sphere | | 37 AVERAGE_INTERVAL All level, temperature, an volume calculations can be averaged using timed method. | 37 | AVERAGE_INTERVAL | be averaged using timed | | 38 ALARM_STATUS | 38 | ALARM_STATUS | | | SETUP TRANSDUCER BLOCK | | | |------------------------|-----------------------------------|--| | Index | Parameter mnemonic | Description | | 39 | VCF_COR_ERR_STATUS | If there is no error performing the volume correction factor then the value is zero otherwise the value is a non-zero code. | | 40 | VOL_CAL_ERR_STATUS | If there is no error performing the volume calculations then the value is zero otherwise the value is a non-zero code. | | 41 | TEMP_UNITS | Celsius, Fahrenheit | | 42 | DENSITY_UNITS | Grams per Mil-
liliter, Grams per Liter,
Kilograms per Cubic
Meter, Kilograms per Liter,
Pounds per Cubic Inch,
Pounds per Cubic Foot,
Pounds per Gallon, Metric
Tonnes per Cubic Meter,
Tons per Cubic Yard | | 43 | VOLUME_UNITS | Liters, Cubic Millimeters,
Cubic Meters, Cubic
Inches, Cubic Feet, Gal-
Ions, or Barrels | | 44 | LENGTH_UNITS | Millimeters, Centimeters,
Meters, Kilometers,
Inches, Feet, or Yards | | 45 | MASS_UNITS | Kilograms, Grams,
Ounces, Pounds, Tons, or
Metric Tonnes | | 46 | TANK_OFFSET | This is the value that will
be added or subtracted
from the level measure-
ment.
This allows the tank level
reading to be calibrated
to the users gauged tank
reading
(or other reference guide.) | | 47 | INTERFACE_TANK_OFFSET | This is the value that will be added or subtracted from the interface measurement. This allows the tank interface reading to be calibrated to the users gauged tank reading (or other reference guide.) | | (Transdu | cer block - Setup parameters cont | inued on next page) | | | | | | SETUP TRANSDUCER BLOCK | | | |------------------------|-------------------------------|---| | Index | Parameter mnemonic | Description | | Setup pa | arameters (Setup transducer b | lock) continued | | 48 | CAL_CURRENT_PROD_
LEV | This is used to calibrate the level measurement. This allows the user to enter the hand gauged tank reading (or other level reference guide) of the Product and the device will calculate the necessary calibration offset. The calculated value will then be stored as the "Tank Offset".) | | 49 | CAL_CURRENT_
INTER_LEV | This is used to calibrate the level measurement. This allows the user to enter the hand gauged tank reading (or other level reference guide) of the Interface and the device will calculate the necessary calibration offset. The calculated value will then be stored as the "Tank Offset".) | | 50 | ALARM_UNITS | This parameter the unit type for which you can program the alarm. Product and Interface can be "volume" or "length" unit types, however Roof can only be "Length" unit type. | | 51 | INTERFACE_HI_ALM | The value for which the Interface cannot be >=. Make sure that the value is programmed in the current Alarm unit type. | | 52 | INTERFACE_LO_ALM | The value for which the Interface cannot be <=. Make sure that the value is programmed in the current Alarm unit type. | | 53 | PRODUCT_HI_ALM | The value for which the Product cannot be >=. Make sure that the value is programmed in the current Alarm unit type. | | 54 | PRODUCT_LO_ALM | The value for which the Product cannot be <=. Make sure that the value is programmed in the current Alarm unit type. | | 57 | TEMP_AVR_HI_ALM | The value for which the Average Temperature cannot be >=. | | 58 | TEMP_AVR_LO_ALM | The value for which the Average Temperature cannot be <=. | | SETUP TRANSDUCER BLOCK | | | |------------------------|---------------------------|---| | Index | Parameter mnemonic | Description | | 59 | NUM_STRAP_TAB_
ENTRIES | The value specifies the number of strap table entries to be used in the tank-strapping table. Table size can range from 2 to 100 entries | | 60 -
63 | STRAP_TAB_LEVEL | | | 64 -
67 | STRAP_TAB_VOL | | | 68 | NUM_VCF_TAB_ENTRIES | The value specifies the number of VCF table entries to be used in the volume correction factor table. Table size can range from 2 to 50 entries | | 69 -
70 | VCF_TAB_TEMP | | | 71 -
72 | VCF_TAB_CORR | | | FACTOR | Y TRANSDUCER BLOCK | | |--------|------------------------------|---------------------------------| | Index | Parameter Mnemonic | Description | | 1 | 1ST_REV | | | 2 | TAG_DESC | | | 3 | STRATEGY | | | 4 | ALERT_KEY | | | 5 | MODE_BLK | | | 6 | BLOCK_ERR | | | 7 | UPDATE_EVT | | | 8 | BLOCK_ALM | | | 9 | TRANDUCER_DIRECTORY | | | 10 | TRANSDUCER_TYPE | | | 11 | XD_ERROR | | | 12 | COLLECTION_DIRECTORY | | | 13 | PASSWORD | Password, 43991 | | 14 | REG_MEAS_LENGTH | Length of the Transmitte | | 15 | REG_SER_NO | Serial Number | | 16 | REG_SW_REV | Software Revision | | 17 | REG_GRADIENT | Gradient | | 18 | REG_NUM_TEMPS | Number of DT's | | 19 | REG_SIGNAL_GAIN | Signal Gain | | 20 | REG_MIN_TRIG_LEVEL | Min Trigger Level | | 21 | REG_TRANSMIT_DELAY | Transmission Delay,
Always 0 | | 22 | REG_SARA_BLANKING | SARA Blanking | | 23 | REG_MAGNET_BLANKING | Magnet Blanking | | 24 | REG_DELTA
REG_MEAS_INTER- | Delta | | 25 | FACE_FIRST | Measure Interface First | | | | | #### FOUNDATION™ fieldbus User Interface | FACTORY TRANSDUCER BLOCK | | | | |--------------------------|------------------------------|--------------------------|--| | Index | Parameter Mnemonic | Description | | | 26 | REG_FLOAT_CONFIG | Float Configuration | | | 27 | REG_DIG_TEMP_POS1 | Digital Temp Position 1 | | | 28 | REG_DIG_TEMP_INTER-
CEPT1 | Digital Temp Intercept 1 | | | 29 | REG_DIG_TEMP_SLOPE1 | Digital Temp Slope 1 | | | 30 | REG_DIG_TEMP_POS2 | Digital Temp Position 2 | | | 31 | REG_DIG_TEMP_INTER-
CEPT2 | Digital Temp Intercept 2 | | | 32 | REG_DIG_TEMP_SLOPE2 | Digital Temp Slope 2 | | | 33 | REG_DIG_TEMP_POS3 | Digital Temp Position 3 | | | 34 | REG_DIG_TEMP_INTER-
CEPT3 | Digital Temp Intercept 3 | | | 35 | REG_DIG_TEMP_SLOPE3 | Digital Temp Slope 3 | | | FACTORY TRANSDUCER BLOCK | | | | |--------------------------|------------------------------|--------------------------|--| | Index | Parameter Mnemonic | Description | | | 36 | REG_DIG_TEMP_POS4 | Digital Temp Position 4 | | | 37 | REG_DIG_TEMP_INTER-
CEPT4 | Digital Temp Intercept 4 | | | 38 | REG_DIG_TEMP_SLOPE4 | Digital Temp Slope 4 | | | 39 | REG_DIG_TEMP_POS5 | Digital Temp Position 5 | | | 40 | REG_DIG_TEMP_INTER-
CEPT5 | Digital Temp Intercept 5 | | | 41 | REG_DIG_TEMP_SLOPE5 | Digital Temp Slope 5 | | | 42 | REG_TRIGGER_LEV0 | | | | 43 | REG_TRIGGER_LEV1 | | | | 44 | REG_TRIGGER_LEV2 | | | | 45 | REG_TRIGGER_LEV3 | | | | 46 | NUM_TEMP_AVR_HI | Num Temp Average | | # **Analog input function blocks** The Model MG transmitter contains 6 Analog Inputs with the output options of product, interface, average temperature, NSVP, GOVP, and GOVI. The Interface and GOVI Analog Inputs require the transmitter to be configured for measuring product and interface levels. To perform a quick configuration of the function blocks configure the following: #### Channel | Analog Input | Channel # | Units | |---------------------|-----------|-------------------| | Product | 1 | Length units | | Interface | 2 | Length units | | Average Temperature | 3 | Temperature units | | NSVP | 4 | Volume units | | GOVP | 5 | Volume units | | GOVI | 6 | Volume units | #### **Linearization Type** | Direct | Choose direct when the output is the transmitter's value. | |----------------------------|--| | Indirect | Choose indirect when the output is calculated based off of the transmitter's value and the relationships is linear, i.e. 0 to 100% | | Indirect
Square
Root | Choose indirect square root when the output is calculated based off of the transmitter's and the output is the square root of the transmitter's value. | #### **Transducer Scale and Output Scale** | | • | |--|--| | Direct | Transducer Scale and Output Scale do not need to be configured. | | Indirect
or
Indirect
Square
Root | The transducer scale should be set to the full operating range that the transmitter will see during use. The output scale should contain
the values that would be outputted when the transducer scale is at its minimum and maximum. The relationship is linear. | The *Transducer Scale* and *Output Scale* can also be configured to display in set units and with a set number of significant digits. Transducer Scale units will be the same as the units programmed into the transmitter; the default settings are Inches for length, Fahrenheit for temperature, and Gallons for volume. Units can be changed under MTS_SETUP_TB -> Setup Parameters -> Data from device -> Units. It is best to double check the units in the transmitter and the Transducer Scale incase someone has changed them accidently. Example 1: Output of product level | Parameter | Configured Value | |-------------------------------|------------------| | Channel | 1 - Product | | Linearization Type | Direct | | Transducer Scale: EU at 100% | N/A | | Transducer Scale: EU at 0% | N/A | | Transducer Scale: Units Index | N/A | | Transducer Scale: Decimal | N/A | | Output Scale: EU at 100% | N/A | | Output Scale: EU at 0% | N/A | | Output Scale: Units Index | N/A | | Output Scale: Decimal | N/A | **Example 2:** Output of Product Level in Percent for 10 m (33 ft.) Transmitter | Tranomitto | | |-------------------------------|------------------| | Parameter | Configured Value | | Channel | 1 - Product | | Linearization Type | Indirect | | Transducer Scale: EU at 100% | 396 | | Transducer Scale: EU at 0% | 0 | | Transducer Scale: Units Index | In | | Transducer Scale: Decimal | 3 | | Output Scale: EU at 100% | 100 | | Output Scale: EU at 0% | 0 | | Output Scale: Units Index | % | | Output Scale: Decimal | 3 | #### Resource block The Resource Block describes characteristics of the Fieldbus device such as the device name, manufacturer, and serial number. A device has only one Resource Block. # LAS/Back-up LAS The model MG transmitter is designed as a Link Master and can be used as a primary or secondary Link Active Scheduler (LAS). For the majority of networks the host system will be the primary LAS with a field device acting as secondary LAS in the event that the primary LAS fails. The typically use of the model MG transmitter will be as a secondary LAS for back-up. # Setup and calibration Setup and Calibration can be conducted from any host with a different process. Below are common parameters that will need to be changed. Please consult the Transducer Block section to locate the parameters. Specific parameters are password protected to keep users from accidently changing factory parameters that should not be changed unless advised by Technical Support. #### Note: The mode will have to be changed to Out of Service (OOS) when editing parameters. When making this change most host systems will warn you that this may upset the process and create a dangerous situation in your plant. Before making the change to OOS, verify that taking the transmitter out of service will not negatively affect control of the plant. #### **UNITS** The model MG transmitter allows the user to select the units for length, temperature, volume, mass, and density. | longth, tomporataro, volumo, maso, and donoity. | | | |---|--|--| | TEMP_UNITS | Celsius, Fahrenheit | | | DENSITY_UNITS | Grams per Milliliter, Grams per Liter,
Kilograms per Cubic Meter, Kilograms
per Liter, Pounds per Cubic Inch, Pounds
per Cubic Foot, Pounds per Gallon, Metric
Tonnes per Cubic Meter, Tons per Cubic Yard | | | VOLUME_UNITS | Liters, Cubic Millimeters, Cubic Meters,
Cubic Inches, Cubic Feet, Gallons, or Barrels | | | LENGTH_UNITS | Millimeters, Centimeters, Meters, Kilometers, Inches, Feet, or Yards | | | MASS_UNITS | Kilograms, Grams, Ounces, Pounds, Tons, or Metric Tonnes | | #### **CALIBRATION** Calibration can be done either using the current tank level or entering an offset for both the product and interface level. The TANK_OFFSET and INTERFACE_TANK_OFFSET contain values that adjust the reference point for the zero point on the transmitter. By adjusting the offsets up or down the user can change the value the transmitter outputs. This process is harder then it sounds and Technical Support should be contacted before proceeding. An alternative method of calibration is to use CAL_CURRENT_PROD_LEV and CAL_CURRENT_INTER_LEV to calibrate the product and interface levels respectively. In order to do so the tank should be static and the user can hand gauge the tank. The user can then take the hand gauge measurement and input it into the transmitter. Make sure that the level does not move from the time the measurement is taken until the transmitter is calibrated. The transmitter will take the current level that is entered and calculate the offsets for the user. #### **VOLUME CALCULATION** The model MG will calculate the volume of the vessel using either a sphere or a strap table formula. The user can choose which method by selecting a 1 for Strap Table or a 0 for a Sphere under VOL_CALC_MODE. When selecting to use the Sphere method the user will have to enter the SPHERE_RADIUS and SPHERE_OFFSET. Despite which method is chosen, the user should enter the WORK-ING_CAPACITY and AVERAGE_INTERVAL. When the user selects to calculate volume based off of a strap table the user will need to enter the strap table. The first step is to enter the NUM_STRAP_TAB_ENTRIES between 2 and 100. For each strap table point the user will have to enter the STRAP_TAB_LEVEL and STRAP_TAB_VOL for every entry. # **TEMPERATURE CORRECTION METHOD** The TEMP_CORR_METHOD is selected by selecting the appropriate correction method. Available selections include: - 1 = 6A (Heavy Oils) - 2 = 6B (Light Oils) - 3 = 6C (Chemical) - 4 = 6C Mod - 5 = Custom Table If Custom Table is chosen the user will need to enter the NUM_VCF_TAB_ENTRIES. Enter the API_GRAVITY (normalized density) value for the product being measured in the applicable field. Allowable values are: 6A - 0.0 deg to 100.0 deg API 6B - 0.0 deg to 85.0 deg API TEC (Temperature Correction Method) 6C uses the thermal expansion coefficient of the product being measured to determine the volume #### FOUNDATION™ fieldbus User Interface correction factor. Allowable values are 270.0 to 930.0. TEC units are in 10 E-6/deg F. In the TEC (6C) field, enter the appropriate value. When selecting correction method 6C Mod you will need to enter the desired base temperature for the volume calculations in the REF_TEMPERATURE. The allowable values are 32 deg F to 150 deg F. Entering a DENSITY is required when using Temperature Correction Method 6C or Custom Table for net mass calculations. The density measurement should be entered as LB/cu.ft. at the given reference temperature. When the user selects to calculate temperature correction based off of a custom table the user will need to enter the custom table. The first step is to enter the NUM_VCF_TAB_ENTRIES between 2 and 50. For each custom table point the user will have to enter the VCF_TAB_TEMP and VCF_TAB_CORR for every entry. #### **FOUNDATION** fieldbus handheld menu tree #### MTS SETUP TB #### FB dynamic variables Other dynamic variables Alarm Status - Alarm Status - VCF Calc Error Status - Volume Calc Error #### **Setup Parameters** - Data from device #### Units - Length Units - Temperature Units - Volume Units - Mass Units - Density Units #### Alarms Offsets - Enter Product Offset - Enter Interface Offset - Enter Current Product Level - Enter Current Interface Level - Volume Calculations #### **Temperature Correction Methods** - Temperature Correction Method - API Gravity - TEC (6C) - Ref Temperature (6C Mod) - Density - Custom Table - -Num of VCF table entries - -Enter Custom Table - -VCF Corr Table: Temperature - -VCF Corr Table: Correction Factor #### **Volume Calculations** - Mode - Working Capacity - Average Interval #### MTS FACTORY TB #### Password Settings - Gradient - Serial Number - Software Revision - Number of DT's - Signal Gain - Min Trigger Levels - Transmission Delay - SARA Blanking - Magnet Blanking - Delta - Measure Interface First #### **Digital Temperature Setup** - Number of DT's - Enter Temperature Points # Float Configuration Set Trigger Levels #### **DDA** interface #### Data line termination and biasing: Termination and biasing of RS-485 data lines are as follows: #### Biasing Each M-Series transmitter has internal high impedance biasing resistors (30K Ω) on both RS-485 data lines. No additional biasing resistors should be present on the connecting devices (PLC, DCS, PC, converter). #### Termination Each M-Series transmitter has an internal termination resistor (100K Ω) installed across the RS-485 signal lines. No additional termination resistors are necessary in the connecting devices (PLC, DCS, PC, converter). #### **Communication parameters:** The 2-wire differential communication interface and all data transmissions must be at half duplex. Only one device (either the master or a single transmitter) can transmit data at any given time. BAUD rate limitations are listed below. | Modbus: | 4800 or 9600 BAUD | 8, N, 1 | |----------------------|-------------------------------|---------| | DDA: | 4800 BAUD | 8, E, 1 | | (Reference) Monitor: | Modbus RTU Variable BAUD Rate | 8, E, 1 | # Hardware and software environments The Level Plus Model MG digital transmitter operates in a networked, intrinsically safe RS-485 DDA software environment. This environment supports up to 8 multi-dropped transmitters on one communication line. The network requires a 4-wire bus to provide both power and communications to each of the transmitters located in the hazardous area. The transmitters are connected in multi-point configuration (see Figure 25). The RS-485 network operates in a master/slave mode where the
master (host computer or similar type network controller) interrogates each slave (DDA transmitter) for a specific type of data. Each slave has a unique switch programmable hardware address that is issued by the host computer to activate a particular transmitter. In addition, the DDA hardware supports a command decoder that supports up to 128 different commands. The host computer interrogates a transmitter for data by sending an address byte, followed immediately by a command byte. The addressed transmitter will 'wake up', identify itself by transmitting an echo of its own local address followed by the received command, and then perform the requested action. After the requested action has been completed, the data (if any) will be transmitted back to the host computer on the RS-485 network. Refer to Section 'DDA Command decoder examples' on page 43 for more information. Figure 25. Typical Electrical Connections - Intrinsically Safe System **DDA User Interface** # **DDA** command decoder examples #### **SERIAL DATA TRANSMISSION FORMAT** Example 1: After the DDA address decoder circuitry receives the 11-bit word, an even parity check is performed across the 8-bit data field. If a parity error is found, the word is ignored and the decoder circuitry resets for the next transmission. If the parity check is good, the decoder circuitry checks for a valid address byte. The address decoder circuitry uses the 'D8' bit to distinguish the difference between address bytes and command bytes. Address bytes are defined as having the most significant bit 'D8' set equal to one. Valid address byte values include 'C0' hex to 'FD' hex (192 to 253 decimal). Address byte values from 80 hex to 'BF' hex are reserved for future use, address byte values 'FE' and 'FF' hex are reserved for test functions. (see Example 2). #### **ADDRESS BYTE** Example 2: If the received address byte matches the local DDA address, the DDA power supply circuitry is activated. If a valid address byte has been command. # DDA/Host computer communication protocol The DDA/Host computer communication protocol consists of two parts: the interrogation sequence generated by the host computer and the data response generated by the interrogated DDA transmitter. The host interrogation sequence always consists of an address byte followed immediately by a command byte (see Example 4). #### DDA/HOST COMMUNICATION Example 4: The maximum delay between the address byte and the command byte is 5 milliseconds. The DDA transmitter will not receive the new command byte if this delay period is exceeded (and the old command byte will be left in the command buffer). See previous section for additional information on verification of the Address/Command bytes. An example of an interrogation sequence to access a transmitter programmed for address 'FO' hex (see Example 5). The transmitter response consists of several components. After a transmitter has been interrogated, the transmitter first responds by found, the decoder circuitry checks to see if the next received word is a command byte. Valid command byte values include '00' hex to '7F' hex (0 to 127 decimal). In addition, all data byte values are restricted to be within '00' hex and '7F' hex (see Example 3). #### **COMMAND BYTE (AND DATA BYTES)** Example 3: Again, an even parity check is performed on the command byte. If the parity check is good, the eight bit data word is latched into a command buffer. This buffer is read by the DDA software to determine which command to execute. If the parity check fails, the command byte is rejected and the old command (from the previous interrogation sequence) will be left in the command buffer. The DDA hardware cannot determine if the current command was possibly rejected. The host computer must then verify if the correct command was received by reading the echo of the address byte and command byte sent by the DDA transmitter. This is the only guaranteed way to determine that both the address and command bytes were received properly. This method also insures proper verification, even if the parity check fails to detect a multiple bit data error in either the address byte or command byte. If the host computer determines that either the address byte or command byte has been corrupted, it must wait the proper time-out period and ignore the received message from the DDA transmitter that was improperly interrogated. The time-out period is variable and is based on the duration of the selected DDA transmitting its own local address and the command that was received from the host computer. This re-transmission of the transmitter address and received command serves two purposes. The first being a simple identification that the correct transmitter received the correct command and that it is currently active. The second purpose is to reset the DDA Address/Command decoder circuitry for the next interrogation sequence. #### **INTERROGATION DATA SEQUENCE** Example 5: #### Note: If the DDA transmitter does not respond to the first interrogation by the host, the Address/Command decoder will be left in an intermediate state. If this occurs, the host will have to reinterrogate the respective transmitter to reset the Address/Command decoder circuitry and then interrogate the respective transmitter again to perform a new transmitter measurement. This hardware feature must be considered when writing software communication drivers to access DDA transmitter data. # DDA Use Interface # **DDA/Host computer communication protocol (Continued)** After the DDA transmitter has retransmitted its local address and received command, it will perform the requested measurement as defined by the received command. After the requested measurement has been completed, the data for that measurement will be transmitted to the host in a predefined format including certain control characters. The DDA transmitted data format begins with a 'start of text' 'STX' character (STX = 02 hex). The 'STX' character set is immediately followed by the requested data and then terminated with an 'end of text' 'ETX' character set (ETX = 03 hex). Certain commands allow multiple data fields to be transmitted within one transmitted data sequence. For these data transmissions, each data field is separated by an ASCII colon ':' character (: = 3A hex), (see Examples 6 and 7). ## Single field data transmission Example 6: <STX><dddd.ddd><ETX> #### Multiple field data transmission Example 7: <STX><dddd.ddd:dddd.ddd:dddd.ddd><ETX> All transmitted data will consist of 7-bit ASCII characters limited to hex values between '**00**' hex and '**7F**' hex (i.e. data bit D8 = 0). After a DDA transmitter has completed a data transmission, the host must wait 50 milliseconds before another interrogation can be performed. This delay is required to enable the previously interrogated transmitter to go into sleep mode and release the network communication lines. All DDA control commands support a checksum calculation function, Data Error Detection (DED) that allows the host computer (master) to check the integrity of the transmitted data. The actual checksum value that is transmitted is the compliment (2's compliment) of the calculated value. The checksum scheme is based on a 16-bit summation of the hex data within the transmitted block (including 'STX' and 'ETX' character sets) without regard to overflow. The two byte result of the adding process is then complimented and appended to the transmitted data block. This compliment process makes the final checksum comparison more efficient in that the checksum result added to its compliment will always result in a zero sum for uncorrupted data transmissions. Checksum data (two hex bytes) can range from '0000' hex to 'FFFF' hex. Since the communication network only allows transmitted data values between '00' and '7F' hex, special processing is required on the hex checksum value before it can be transmitted. This two byte hex value must first be converted to numeric (decimal) ASCII characters before transmission. For example, a checksum value of 'FFFF' hex would be transmitted as ASCII 65535. The host computer would then have to convert ASCII 65535 back to FFFF hex and perform its own checksum calculation and comparison for the received data from the DDA transmitter. An example is shown (see Example 8) of a single field data transmission including checksum data and an sample checksum calculation. Checksum calculation Example 8: <STX><dddd.ddd><ETX><cccc> Append checksum value #### Note: The appended checksum value will always consist of five decimal (ASCII) characters ranging from *00000 to 65535*. The checksum function can be enabled or disabled. #### Message transmitted from DDA transmitter (command 12 Hex): <STX><265.322.109.456><ETX>64760 Hex character equivalent of transmitted data record including <STX> and <ETX> characters: 02, 32, 36, 35, 2E, 33, 32, 32, 3A, 31, 30, 39, 2E, 34, 35, 36, 03 Two byte Hex summation of data:0308 HexTwo's compliment:FCF8 HexConvert to decimal ASCII:64760 To verify transmitted data from the DDA transmitter, perform the two byte Hex summation over the data record (including '**STX**>' and '**ETX**>') shown in *(Example 8)*. The result in this example is 0308 Hex. Then convert the decimal ASCII checksum value back to Hex (for example, 64760 to FCF8 Hex). Add the Hex summation value to the Hex checksum value and the result will be zero (disregarding overflow) for uncorrupted data. 0308 Hex + FCF8 Hex = 0000 Hex. #### Note: Cyclic Redundancy Check (CRC) error checking will be offered at a later date. A command switch will be defined that will let the DDA data be transmitted with CRC error checking instead of checksum error checking. The checksum calculations will use the CRC-CCITT defined polynomial with a 16-bit CRC result. This 16-bit CRC value will be appended to each transmitted message. Since the communication network only allows transmitted data values between 00 and 7F hex, special processing is
required on the 16-bit hex CRC value before it can be transmitted. This 16-bit (two byte) hex value must first be converted to numeric (decimal) ASCII characters before transmission. For example, a checksum value of 'FFFF' hex would be transmitted as ASCII 65535. #### **DDA User Interface** #### **NETWORK PROTOCOL/TIMING CONSIDERATIONS** The DDA network has several timing constraints that must be considered when designing and coding communication drivers. The DDA network follows the RS-485 standard which defines a multi-drop communication interface that uses differential drivers and receivers operating in half-duplex mode. When using the RS-485 standard configuration, each device's driver and receiver are wired together (see Figure 26). Each device drive on the network must be disabled (high impedance) except when the device is ready to transmit data. In order to keep devices from transmitting data at the same time, one device is selected as the host (or master). In a DDA network, the host computer (or other communication interface) is the master, and controls the communication timing and protocol. The DDA transmitters act as slave devices, only transmitting data when requested by the host computer device. In this case, the host computer enables its driver and transmits the 'Address/Command' interrogation sequence. After the Address/Command has been completely transmitted, the host disables its driver to allow reception of the data from the DDA transmitter. The transmitter with the matching address then becomes active, enables its driver and transmits the Address/Command echo followed by the requested data. The transmitter then disables its driver and goes back into sleep mode. Since all devices operate independently, certain timing constraints are imposed on the protocol to eliminate multiple devices from transmitting data simultaneously. Network protocol timing sequences (interrogation sequences) are shown in (*Figure 27*. This time line representation of data transmission sequences also provides information about host computer control of the RS-485 communication card and also illustrates driver enabled control through the RTS control line. #### Note: Many available communication cards (line drivers) for use with the host computer device use a special control line input to control the enabling and disabling of the RS-485 driver. Typically this input is connected to the computers RTS or DTR communication port control line. The computer can then control the state of the driver by toggling the RTS or DTR signal lines via software control. An example of this control method is shown in (Figure 27). Other control methods are also used depending on the manufacturer of the equipment. Figure 26. RS-485 Multi-drop example Figure 27. Network protocol timing information ### The following steps provide an interrogation sequence example: - The start of the sequence begins when the host enables its RS-485 driver to transmit the Address/Command bytes (see time line 'T0' in Figure 27). - After the driver is enabled, the host performs a small time delay 'T1'. In this example, the host enables the driver by raising the RTS control line of the computer to the active (enabled) state. This typically requires no more than 1 millisecond. If the communication lines are extremely long, additional time may be required due to the additional capacitance of the wires. - 3. The host then transmits the address byte followed immediately by the command byte. For 4800 Baud transmission rates, the time to transmit one byte (11-bit word size) is fixed at 2.3 milliseconds. Then time delays 'T2' and 'T4' are fixed at 2.3 milliseconds. Time delay 'T3' is the interbyte transmission time. Normally this is at least one bit time - (0.21 milliseconds @ 4800 Baud) which is controlled by the computer communication hardware. Sometimes software overhead can extend this delay. The maximum permissible delay for period 'T3' is 5 milliseconds. Then the total maximum delay for periods - 'T2, T3, T4' is 9.6 milliseconds. - 4. After the host transmits the address and command bytes, the host disables its driver to allow the transmitter to transmit the Address/Command echo and the requested data. Before the driver is disabled, the software must insure that the command byte has been completely transmitted. This can be done by observing control flags from 'UART' of the communication port, such as Transmit Register Empty (TRE) and Transmit Holding Register Empty (if the UART is double buffered). Software delay methods based on maximum character transmission times for 4800 Baud rates can also be # DDA User Interface #### Interrogation sequence examples (Continued) used but are less reliable. Once it has been verified that the command byte '0' has been completely transmitted, an additional delay should be added before the driver is disabled. This delay 'T5' will insure that data has propagated the network wiring before the driver goes to the high impedance (disabled) state. A delay period of 'T5' = 1 millisecond is adequate for most long cable runs. The maximum delay allowed for 'T5' is based on the fact that time period 'T6' is fixed in the DDA hardware to be 22 (+/-2) milliseconds. The host driver should be disabled well before (at least 5 milliseconds) the DDA transmitter enables its driver and begins transmission of the Address/Command echo. Assuming the maximum delay of 5 milliseconds for period 'T3', and 2.3 milliseconds for 'T4', and that the host driver should be disabled for 5 milliseconds before the transmitter begins transmitting data, the maximum delay for 'T5' then is 7.7 milliseconds. #### Note: If 'T3' is less than 5 milliseconds, then the maximum delay for 'T5' can be extended by the difference (5 milliseconds - T3 actual). - 5. The transmitter will begin to transmit the Address/Command echo in 22 (+/- 2) milliseconds after the address byte is received from the host computer. This is defined as period '**T6**' and is fixed by the DDA hardware. Based on a Baud rate of 4800, the address echo is transmitted in 2.3 milliseconds (period '**T7**'). The interbyte delay period '**T8**' for the DDA transmitter is fixed at 0.1 milliseconds and the command echo is transmitted 2.3 milliseconds (period '**T9**'). - Period 'T10' is the time required for the DDA electronics to perform the requested command. This is a variable - delay based on the command requested. The typical transmitter response time for each command is listed in section '11.4 DDA command definitions'. - Period 'T11' is the time required for the DDA electronics to transmit the data for the requested command. This is a variable delay based on the command requested. The typical data transmission time for each command is listed in section '11.4 DDA command definitions'. - 8. After the transmitter has completed the data transmission for the requested command, it will disable its driver and go back to inactive mode. The transmitter electronics require 50 milliseconds to transition from active mode to inactive mode. Another transmitter (or the same transmitter) cannot be interrogated until time period 'T12' = 50 milliseconds has elapsed. - 9. Repeat the sequence for the next transmitter. #### Other protocol considerations - The transmitted ASCII data from the DDA transmitter may contain data fields with 'Exxx' error codes. All DDA error codes are preceded by ASCII 'E' (45 hex, 69 decimal). Communication interface drivers must parse and handle DDA error codes properly or data processing errors could result. For additional information about DDA error codes, (see page 54). - 2. Use the DDA 'Data Error Detection' function to verify the integrity of the data transmitted from the transmitter. - 3. Certain RS-485 communication cards and (RS-232 to RS-485 converter cards) allow user control of the receiver function. This feature must be considered when developing communication drivers. Due to the half-duplex RS-485 loopback wire connections, all data that is transmitted by the host computer device will be 'echoed' into the receiver inputs. If the receiver function is enabled, then the host transmitted data along with the DDA transmitter transmitted data will be received into the computer receive buffer. # **DDA Command definitions (includes protocol information)** #### **SPECIAL CONTROL COMMANDS** Command 00 Hex (0 Dec) - Transmitter disable command This command can be used to disable an active transmitter (force transmitter back to sleep mode). This command does not need to be preceded by an address byte and can only be issued when DDA transmitters are not transmitting data. This 'disabled' command is typically used with other commands that could leave the transmitter in active mode, i.e. certain memory transfer commands, test mode commands, etc. #### Note: During normal mode operation, a DDA transmitter will force itself back into sleep mode if any data is transmitted on the network by any other device. This is a safety feature added to the firmware to avoid data collisions on the network. Command 01 Hex (1 Dec): Module identification command Data format: <STX><DDA><ETX><cccc> - Fixed length record containing 3 ASCII characters '<DDA>' - Five (5) character checksum appended after '<ETX>' character set Command 02 Hex (2 Dec): Data format: Change address <SOH><ddd><EOT> - Fixed length record with three (3) characters - The data field is the new address - The data range is the new address - The data range is from 192 253 - '<**SOH>**' is ASCII 01 Hex - '<EOT>' is ASCII 04 Hex - Default Address is '192' Command 03 Hex - Command Hex 09 - Not Defined # JDA User Interface #### **Model MG Operation and Installation Manual** #### **DDA User Interface** #### LEVEL COMMANDS Command OA Hex (10 Dec): Output level 1 (product) at 0.1 inch resolution (with checksum) Data format: <STX><dddd.d><ETX><cccc> Variable length record with one (1) to four (4) characters to the left of decimal character · Fixed at one (1) character to
the right of decimal character Five (5) character checksum appended after the '<ETX>' character set #### Note: <cccc> Checksum characters are only appended if the Data Error Detection (DED) function is enabled. Command OB Hex (11 Dec): Output level 1 (product) at 0.01 inch resolution (with checksum) Data format: <STX><dddd.dd><ETX><cccc> Variable length record with one (1) to four (4) characters to the left of decimal character Fixed at two (2) characters to the right of decimal character • Five (5) character checksum appended after the '<ETX>' character set Command OC Hex (12 Dec): Output level 1 (product) at 0.001 inch resolution (with checksum) Data format: <STX><dddd.ddd><ETX><cccc> Variable length record with one (1) to four (4) characters to the left of decimal character · Fixed at three (3) characters to the right of decimal character #### Data characters can include the following: - 0 through 9 - (-) minus sign Data format: - · (.) decimal point - (E) ASCII 45 Hex precedes all error codes - (:) ASCII 3A Hex is used as a data field separator for multiple data field transmissions - (space) ASCII 20 Hex space character Command OD Hex (13 Dec): Output level 2 (interface) at 0.1 inch resolution (with checksum) Data format: Same as Command 0A Command OE Hex (14 Dec): Output level 2 (interface) at 0.01 inch resolution (with checksum) Data format: Same as Command OB Command OF Hex (15 Dec): Output level 2 (interface) at 0.001 inch resolution (with checksum) Same as Command OC Command 10 Hex (16 Dec): Output level 1 (product) and level 2 interface at 0.1 inch resolution (with checksum) **Data format:** <*STX*><*dddd.d:ddddd.d*><*ETX*><*cccc>* Variable length record with one (1) to four (4) characters to the left of each decimal character in each data field Fixed at one (1) character to the right of each decimal character in each data field Level 1, level 2 data fields separated by ASCII colon (:) character • Five (5) character checksum appended after the '<ETX>' character set **Command 11 Hex (17 Dec):** Output level 1 (product) and level 2 (interface) at 0.01 inch resolution (with checksum) Data format: <STX><dddd.dd:dddd.dd><ETX><cccc> Variable length record with one (1) to four (4) characters to the left of each decimal character in each data field Fixed at two (2) characters to the right of each decimal character in each data field. Level 1, level 2 data fields separated by ASCII colon (:) character • Five (5) character checksum appended after the '<ETX>' character set Command 12 Hex (18 Dec): Output level 1 (product) and level 2 (interface) at 0.001 inch resolution (with checksum) **Data format:** <*STX*><*dddd.ddd*.*ddd*><*ETX*><*cccc>* Variable length record with one (1) to four (4) characters to the left of each decimal character in each data field Fixed at three (3) characters to the right of each decimal character in each data field • Level 1, level 2 data fields separated by ASCII colon (:) character • Five (5) character checksum appended after the '**ETX>**' character set Command 13 Hex - Command 18 Hex - Not Defined #### **TEMPERATURE COMMANDS** **Command 19 Hex (25 Dec):** Average Temperature at 1.0 °F resolution (with checksum) Data format: <STX><dddd><ETX><cccc> • Variable length record with one (1) to four (4) characters • Five (5) character checksum appended after the '**ETX>**' character set #### Note: Average temperature is the average temperature reading from all DTs submerged by approximately 1.5 inches of product. Command 1A Hex (26 Dec): Average temperature at 0.2 °F resolution (with checksum) **Data format:** <*STX*><*dddd.d*><*ETX*><*cccc>* Variable length record with one (1) to four (4) characters to the left of decimal character · Fixed at one (1) character to the right of decimal character • Five (5) character checksum appended after the '**<ETX>**' character set Command 1B Hex (27 Dec): Average temperature at 0.02 °F resolution (with checksum) **Data format:** <*STX*><*dddd.dd*><*ETX*><*cccc>* Variable length record with one (1) to four (4) characters to the left of decimal character - · Fixed at two (2) characters to the right of decimal character - Five (5) character checksum appended after the '**<ETX>**' character set # JDA User Interface #### **TEMPERATURE COMMANDS (CONTINUED)** #### Command 1C Hex (28 Dec): Individual DT temperature at 1.0 °F resolution (with checksum) #### Data format: <STX><dddd:dddd:dddd:dddd><ETX><cccc> - Variable length record with one (1) to four (4) characters in each data field - Variable number of data fields (up to 5) separated by ASCII colon (:) characters. Number of data fields is based on the number of DTs programmed in DDA transmitter memory - First data field is always DT #1, second data field is DT #2, etc - Five (5) character checksum appended after the '<ETX>' character set #### Command 1D Hex (29 Dec): Individual DT temperature at 0.2 °F resolution (with checksum) Data format: <STX><dddd.d:dddd.d:dddd.d:dddd.d><ETX><cccc> - Variable length record with one (1) to four (4) characters to the left of decimal character in each data field - Fixed at one (1) character to the right of each decimal character in each data field - Variable number of data fields (up to 5) separated by ASCII colon (:) characters. Number of data fields is based on the number of DTs programmed in DDA transmitter memory - First data field is always DT #1, second data field is DT #2,...etc - Five (5) character checksum appended after the '<ETX>' character set #### Command 1E Hex (30 Dec): Individual DT temperature at 0.02 °F resolution (with checksum) Data format: <STX><dddd.dd:dddd.dd:dddd.dd:dddd.dd.ddd.dd><ETX><cccc> - Variable length record with one (1) to four (4) characters to the left of decimal character in each data field - Fixed at two (2) characters to the right of each decimal character in each data field - Variable number of data fields (up to 5) separated by ASCII colon (:) characters. Number of data fields is based on the number of DTs programmed in DDA transmitter memory - First data field is always DT#1, second data field is DT #2,...etc - Five (5) character checksum appended after the '<ETX>' character set #### Command 1F Hex (31 Dec): Average and individual DT temperature at 1.0 °F resolution (with checksum). #### Data format: <STX><dddd:dddd:dddd:dddd:dddd><ETX><cccc> - Variable length record with one (1) to four (4) characters in each data field - Variable number of data fields (up to 6) separated by ASCII colon (:) characters. The number of data fields is based on the number of DTs programmed in DDA transmitter memory (number of DTs + 1) - The first data field is always the average of the individual DTs submerged by at least 1.5 inches of product - The second data field is always DT #1, third data field is DT #2, ... etc - Five (5) character checksum appended after the '<ETX>' character set #### Command 20 Hex (32 Dec): Average and individual DT temperature at 0.2 °F resolution (with checksum). #### Data format: <STX><dddd.d:dddd.d:dddd.d:dddd.d:dddd.d:dddd.d><ETX><cccc> - Variable length record with one (1) to four (4) characters to the left of decimal character in each data field - Fixed at one (1) character to the right of each decimal character in each data field - Variable number of data fields (up to 6) separated by ASCII colon (:) characters. The number of data fields is based on the number of DTs programmed in DDA transmitter memory (number of DTs + 1) - The first data field is always the average of the individual DTs submerged by at least 1.5 inches of product - The second data field is always DT #1, third data field is DT #2, ... etc - Five (5) character checksum appended after the '<ETX>' character set #### Command 21 Hex (33 Dec): Average and individual DT temperature at 0.02 °F resolution (with checksum). #### Data format: <STX><dddd.dd:ddddd.dd:dddd.dd:dddd.dd:dddd.dd:dddd.dd><ETX><cccc> - Variable length record with one (1) to four (4) characters to the left of decimal character in each data field - Fixed at two (2) characters to the right of each decimal character in each data field - Variable number of data fields (up to 6) separated by ASCII colon (:) characters. The number of data fields is based on the number of DTs programmed in DDA transmitter memory (number of DTs + 1) - The first data field is always the average of the individual DTs submerged by at least 1.5 inches of product - The second data field is always DT #1, third data field is DT #2, ... etc - Five (5) character checksum appended after the '**ETX>**' character set # Command 22 Hex - Command 24 Hex - Reserved Command 25 Hex (37 Dec): Fast average and individual DT temperature at 1.0 °F resolution (with checksum) **Data format:** Same as command 1F Hex Command 26 Hex - Command 27 Hex - Not defined # MULTIPLE OUTPUT COMMANDS (LEVEL AND TEMPERATURE) Command 28 Hex (40 Dec): Level 1 (product) at 0.1 inch resolution, and average temperature at 1.0 °F resolution (with checksum) **Data format:** <*STX>*<*dddd.d:dddd>*<*ETX>*<*cccc>* - Variable length record with one (1) to four (4) characters to the left of decimal character in first data field - Fixed at one (1) character to the right of decimal character in first data field - Variable length record with one (1) to four (4) characters in second data field. - Level 1 temperature data fields separated by ASCII colon (:) character - Five (5) character checksum appended after the '<ETX>' character set #### **DDA User Interface** #### **MULTIPLE OUTPUT COMMANDS (CONTINUED)** Command 29 Hex (41 Dec): Level 1 (product) at 0.01 inch resolution, > and average temperature at 0.2 °F resolution (with checksum) Data format: <STX><dddd.dd:ddddd.d><ETX><cccc> · Variable length record with one (1) to four (4) characters to the left of decimal character in first data field - Fixed at two (2) characters to the right of decimal character in first data - Variable length record with one (1) to four (4) characters to the left of decimal
character in second data field - Fixed at one (1) character to the right of decimal character in second - Level 1, temperature data fields separated by ASCII colon (:) character. - Five (5) character checksum appended after the '**ETX**>' character set Command 2A Hex (42 Dec): Level 1 (product) at 0.001 inch resolution, and average temperature at 0.02 °F resolution (with checksum) <STX><dddd.ddd:dddd.dd><ETX><cccc> - · Variable length record with one (1) to four (4) characters to the left of decimal character in first data field - Fixed at three (3) characters to the right of decimal character in first data field - Variable length record with one (1) to four (4) characters to the left of decimal character in second data field - Fixed at two (2) characters to the right of decimal character in second data field - Level 1, temperature data fields separated by ASCII colon (:) character - Five (5) character checksum appended after the '<ETX>' character set #### Command 2B Hex (43 Dec): Data format: Level 1 (product), level 2 (interface) at 0.1 inch resolution, and average temperature at 1.0 °F resolution (with checksum) Data format: <STX><dddd.d:ddddd.d:dddd><ETX><cccc> - Variable length record with one (1) to four (4) characters to the left of decimal character in first data field - Fixed at one (1) character to the right of decimal character in first data - Variable length record with one (1) to four (4) characters to the left of decimal character in second data field - Fixed at one (1) character to the right of decimal character in second data field - Variable length record with one (1) to four (4) characters in third data - Level 1, level 2, temperature data fields separated by ASCII colon (:) - Five (5) character checksum appended after the '**ETX**>' character set #### Command 2C Hex (44 Dec): Level 1 (product), level 2 (interface) at 0.01 inch resolution, and average temperature at 0.2 °F resolution (with checksum) Data format: <STX><dddd.dd:dddd.dd:dddd.d><ETX><cccc> · Variable length record with one (1) to four (4) characters to the left of decimal character in first data field - Fixed at two (2) characters to the right of decimal character in first data - Variable length record with one (1) to four (4) characters to the left of decimal character in second data field - Fixed at two (2) characters to the right of decimal character in second data field - Variable length record with one (1) to four (4) characters to the left of decimal character in third data field. - Fixed at one (1) character to the right of decimal character in third data - Level 1, level 2, temperature data fields separated by ASCII colon (:) character - Five (5) character checksum appended after the '**ETX**>' character set Command 2D Hex (45 Dec): Level 1 (product), level 2 (interface) at 0.001 inch resolution, and average temperature at 0.02 °F resolution (with checksum) Data format: <STX><dddd.ddd:dddd.ddd:dddd.dd><ETX><cccc> - · Variable length record with one (1) to four (4) characters to the left of decimal character in first data field. - Fixed at three (3) characters to the right of decimal character in first data field. - Variable length record with one (1) to four (4) characters to the left of decimal character in second data field. - Fixed at three (3) characters to the right of decimal character in second - Variable length record with one (1) to four (4) characters to the left of decimal character in third data field. - Fixed at two (2) characters to the right of the decimal character in third - Level 1, level 2, temperature data fields separated by ASCII colon (:) character. - Five (5) character checksum appended after the '**ETX**>' character set Command 2E Hex - Command 30 Hex - Not Defined Command 31 Hex - Command 40 Hex - Reserved for factory use #### **HIGH-LEVEL MEMORY READ COMMANDS** Command 4B Hex (75 Dec): Read 'number of floats and number of DTs' control variables Data format: <STX><d:d><ETX><cccc> - Fixed length record with one (1) character in each field. - The first data field is the number of floats, second data field is the number of DTs - Five (5) character checksum appended after the '**<ETX>**' character set Command 4C Hex (76 Dec): Read 'gradient' control variable Data format: <STX><d.ddddd><ETX><cccc> Fixed length record with seven (7) characters (including decimal point). Five (5) character checksum appended after the '**ETX>**' character set Command 4D Hex (77 Dec): Read float zero position data (float #1 and #2) Data format: <STX><dddd.ddd:dddd.ddd><ETX><cccc> (Continued on next page) # JDA User Interface ## **HIGH-LEVEL MEMORY READ COMMANDS (CONTINUED)** #### Command 4D Hex (77 Dec): continued - Variable length record with one (1) to four (4) characters to the left of decimal character in first data field. The data may include an ASCII (-) negative sign character (2D Hex) in the first character position - Fixed at three (3) characters to the right of decimal character in first data field - Variable length record with one (1) to four (4) characters to the left of decimal character in second data field. The data may include an ASCII(-) negative sign character (2D Hex) in the first character position - Fixed at three (3) characters to the right of decimal character in second data field - Float #1, float #2 data fields separated by ASCII colon (:) character - Five (5) character checksum appended after the '<ETX>' character set #### Command 4E Hex (78 Dec): Read DT position data (DTs 1 - 5) #### Data format: <STX><dddd.d:ddddd.d:ddddd.d:ddddd.d><ETX><cccc> - Variable length record with one (1) to four (4) characters to the left of decimal character in each data field - Fixed at one (1) character to the right of decimal character in each data field. - Variable number of data fields (up to 5) separated by ASCII colon (:) characters. The number of data fields is based on the 'number of DTs' control variable. (see command 4B Hex) - The first data field is always DT #1, second field is always DT #2,...etc. - Five (5) character checksum appended after the '<ETX>' character set #### Note: DT position data is referenced from the mounting flange of the transmitter housing. DT #1 is the DT closest to the tip of the transmitter. #### Command 4F Hex (79 Dec): Read factory serial number data and software version number Data format: <STX><ddddd....ddddd:Vd.ddd><ETX><cccc> - Fixed length record of 50 characters to the left of the colon character and 6 characters to the right of the colon character (57 total) - Five character checksum appended after the '**<ETX>**' character set #### Command 50 Hex (80 Dec): Read firmware control code #1 #### Data format: *<STX><d:d:d:d:d><ETX><cccc>* - Fixed length record with one (1) character in each data field - First data field is the control variable for the data error detection (DED) mode - The second data field is the control variable for the communication time-out timer (CTT) - · The third data field is the control variable for temperature data units - The fourth data field is the control variable for linearization enable/ disable - The fifth data field is the control variable for innage/ullage level output - The sixth data field is reserved for future use; the output value for this field is ASCII '0' - See write command (5A Hex) for field value assignments - Five (5) character checksum appended after the '<ETX>' character set Command 51 Hex (81 Dec): Read hardware control code #1 Data format: <STX><dddddd><ETX><cccc> - Fixed length record with six (6) characters - The hardware control code controls various functions in the DDA electronic hardware - The hardware control code must match the hardware control code stamped on the transmitter label; the control code on the label is preceded by 'CC' (for example, CC001122) - Five (5) character checksum appended after the '**ETX>**' character set - For additional information about the hardware control code, (see section 8, Quick Start-up Guide Modbus and DDA) Command 52 Hex (82 Dec): Not defined Command 53 Hex (83 Dec): Reserved for factory use Command 54 Hex (84 Dec): Not defined #### **HIGH-LEVEL MEMORY WRITE COMMANDS** **Command 55 Hex (85 Dec):** Write 'number of floats and number of DTs' control variables **Host Issued Command (Part 1)** **Data format:** <addr><commands> - '<addr>' is the DDA transmitter address - '<command>' is DDA command 55 - After the address and command byte have been transmitted by the host, the respective DDA transmitter will 'wake up' and retransmit (echo) the local DDA address and received command. The DDA transmitter will remain active, waiting for the second part of the memory write command to be issued by the host. If the second part of the memory write command is not received within 1.0 seconds (see note below), or the command is not received in the proper format, the DDA transmitter will cancel the current command sequence and go back to sleep mode. #### Note: The time-out timer function can be enabled or disabled. #### Host Issued Command (Part 2) **Data format:** *<SOH><d:d><EOT>* - · Fixed length record with two (2) data fields - '<**SOH>**' is ASCII 01 Hex - The first data field contains the 'number of floats' value to be written to the 'number of floats' control variable. This variable is limited to a value of 1 or 2 (ASCII) - The second data field contains the 'number of DTs' value to be written to the 'number of DTs' control variable. This variable is limited to a value between 0 and 5 (ASCII) - ASCII colon (:) is the 'number of floats/number of DTs' field separator. - '<EOT>' is ASCII 04 Hex DDA Transmitter Response (verification sequence) **Data format:** <*STX*><*d:d*><*ETX*><*ccccc*> #)DA Usei nterface #### **Model MG Operation and Installation Manual** #### **DDA User Interface** #### **HIGH-LEVEL MEMORY WRITE COMMANDS (CONTINUED)** - · Fixed length record with two (2) data fields - '<STX>' is ASCII 02 Hex - The first data field contains the 'number of floats' value to be written to the
'number of floats' control variable. This variable is limited to a value of 1 or 2 (ASCII) - The second data field contains the 'number of DTs' value to be written to the 'number of DTs' control variable. This variable is limited to a value between 0 and 5 (ASCII) - ASCII colon (:) is the 'number of floats/number of DTs' field separator - '<ETX>' is ASCII 03 Hex - '<cccc>' is a five (5) character checksum appended after the '<ETX>' character set # Host Issued Command (Part 3) Data format: <ENQ> - '<ENQ' is ASCII 05 Hex. This character set is sent by the host to initiate the EEPROM write cycle. After the EEPROM memory locations have been successfully written to, the DDA transmitter will respond back to the host with a 'ACK' character set signifying the memory write cycle was successful, or with a 'NAK' character signifying the memory write cycle was unsuccessful. See DDA transmitter response below. - EEPROM write time is 10 milliseconds per byte. The 'ACK/NAK' response will not be transmitted by the DDA transmitter until the memory bytes have been written and verified or a memory write error has caused the DDA transmitter to time-out. #### Note: EEPROM write time is 10 milliseconds per byte. The ACK/NAK response will not be transmitted by the DDA transmitter until the memory bytes have been written and verified or a memory write error has caused the DDA transmitter to time-out. # DDA Transmitter Response: Data format: <ACK> '<ACK' is ASCII 06 Hex. This character set is sent by the DDA transmitter to confirm to the host that the EEPROM memory write cycle was completed successfully. **Data format:** <*NAK*><*Exxx*><*ETX*><*ccccc*> - '<NAK>' is ASCII 15 Hex. This character set is sent by the DDA transmitter to confirm to the host that the EEPROM memory write cycle was not completed successfully. - '<EXXX>' is an error code defining the memory write error that occurred during the EEPROM write cycle. 'E' is ASCII 45 Hex and 'xxx' is the numeric ASCII error code ranging from 000 to 999. For additional information about DDA error codes, (see section X.X). - '<ETX>' is ASCII 03 Hex - '<cccc' is a five character checksum appended after the '<ETX>' character set - Value can range from 00000 to 65535. All high level memory write commands adhere to the communication sequence as described above, and consist of the following six components: - 1. Host issued command (Part 1): <address><command> - 2. DDA transmitter response: <address><command> echo - 3. Host issued command (Part 2): data to be written (including necessary control characters) - 4. DDA transmitter response: verification sequence - 5. Host issued command (Part 3): <ENQ> - 6. DDA transmitter response: <ACK> or <NAK> Descriptions for other high level memory write commands will include only the Data format for Part 2 of each host issued command. Command 56 Hex (86 Dec):Write 'gradient' control variableData format:<SOH><d.ddddd><EOT> - · Fixed length record with one data field - '<\$0H>' is ASCII 01 Hex - The fixed length data field contains the 'gradient' value to be written to the 'gradient' control variable. This variable is limited to a value between 7.00000 and 9.99999 (ASCII) - '<EOT>' is ASCII 04 Hex Command 57 Hex (87 Dec): Write float zero position data (float #1 or #2) **Data format:** <*SOH><c:dddd.ddd><EOT>* - · Variable length record with two (2) data fields - The first data field contains one character that controls which zero position memory location is written to (i.e., float #1 or float #2). This control character is limited to a value of 1 or 2 (ASCII) - The second data field contains the 'zero position' data value to be written to the 'zero position' memory location. This is a variable length data field with one (1) to four (4) characters to the left of the decimal character and fixed at three (3) characters to the right of the decimal character. The data may include the ASCII (-) negative sign character (2D Hex) in the first position. The zero position data is limited to a value between -999.999 and 9999.999 (ASCII) - '<**EOT**>' is ASCII 04 Hex #### Note: Zero position is referenced from the mounting flange of the transmitter housing. Command 58 Hex (88 Dec): Write float zero position data (float #1 or #2) using DDA calibrate mode. **Data format:** <*SOH><c:dddd.ddd><EOT>* - · Variable length record with two (2) data fields - The first data field contains one character that controls which zero position memory location is written to (i.e., float #1 or float #2). This control character is limited to a value of 1 or 2 (ASCII) - The second data field contains the 'current float position' data value to be used to calculate the 'zero position' value that is to be written to the 'zero position' memory location. This is a variable length data field with one (1) to four (4) characters to the left of the decimal character and fixed at three (3) characters to the right of the decimal character. The data may include the ASCII (-) negative sign character (2D Hex) in the first position. The 'current float position' data is limited to a value between -999.999 and 9999.999 (ASCII) - '<EOT>' is ASCII 04 Hex # DDA User Interface #### **HIGH-LEVEL MEMORY WRITE COMMANDS (CONTINUED)** Command 59 Hex (89 Dec): Write DT position data (DT1-5). Data format: <SOH><c:dddd.d><EOT - · Variable length record with two (2) data fields - The first data field contains one (1) character that controls which 'DT position' memory location is written to (i.e. DT position #1, 2, 3, 4 or 5) - This control character is limited to a value between 1 and 5 (ASCII) - The second data field contains the 'DT position' data value to be written to the respective 'DT position' memory location. This is a variable length data field with one (1) to four (4) characters to the left of the decimal character and fixed at one (1) character to the right of the decimal character. The DT position data is limited to a value between 0.0 and 9999.9 (ASCII) - '<**EOT**>' is ASCII 04 Hex Command 5A Hex (90 Dec): Write firmware control code #1 Data format: <SOH><d:d:d:d:<d><EOT> - · Fixed length record with one character in each data field - '<**SOH**>' is ASCII 01 Hex - The first data field is the control variable for the data error detection (DED) function. This variable can have a value of 0, 1, or 2. A value of 0 enables the DED function, using a 16-bit checksum calculation. A value of 1 enables the DED function, using a 16-bit CRC calculation. A value of 2 disables the DED function - The second field is the control variable for the communication time-out timer (CTT) function. This variable can have a value of 0 or 1. A value of 0 enables the CTT function, and a value of 1 disables the CTT function - The third data field is the control variable for temperature data units This variable can have a value of 0 or 1. A value of 0 enables Fahrenheit temperature units. A value of 1 enables Celsius temperature units - The fourth data field is the control variable for linearization control. This variable can have a value of 0 or 1. A value of 0 disables linearization of the level data. A value of 1 enables linearization - The fifth data field is the control variable for innage/ullage level output. This variable can have a value of 0,1 or 2. A value of 0 enables normal innage level output. A value of 1 enables ullage level output and a value of 2 enables ullage level output with reversed DT submersion processing. Mode 2 is used for inverted transmitter applications where the transmitter is installed from the bottom of the tank - The sixth data field is reserved for future use. The data value for this field must be '0' (ASCII 30 Hex) - '<EOT>' is ASCII 04 Hex Command 5B Hex (91 Dec): Write hardware control code #1 Data format: <SOH><dddddd><EOT> - Fixed length record with six (6) characters - '**<\$0H>**' is ASCII 01 Hex - The hardware control code controls various functions in the DDA electronic hardware - The hardware control code must match the hardware control code stamped on the transmitter label. The control code on the label is preceded by 'CC' (i.e. CC001122) - '<EOT>' is ASCII 04 Hex Command 5C Hex (92 Dec): Not Defined Command 5D Hex (93 Dec): Reserved for factory use Command 5F Hex - 7F Hex - Reserved for future use #### **DIAGNOSTIC/SPECIAL COMMAND SET** #### enum alarmStatusBits INTERFACE ALARM HIGH = 0x0001INTERFACE_ALARM_LOW = 0x0002PRODUCT_ALARM_HIGH = 0x0004PRODUCT_ALARM_LOW = 0x0008**ROOF ALARM HIGH** = 0x0010ROOF_ALARM_LOW = 0x0020AVG_TEMP_ALARM_HIGH = 0x0040AVG_TEMP_ALARM_LOW = 0x0080MAGNET_IS_MISSING = 0x0100DIG_TEMP0_ERROR = 0x0200DIG TEMP1 ERROR = 0x0400DIG_TEMP2_ERROR = 0x0800DIG_TEMP3_ERROR = 0x1000DIG_TEMP7_ERROR = 0x2000DIG_AVG_TEMP_ERROR = 0x4000DELIVERY_IN_PROGRESS = 0x8000TRIGGER LEVEL ERROR = 0x10000EEPROM_ERROR = 0x20000 #### **DDA ERROR CODES** All error codes are preceded by a capital letter 'E' ASCII (45 hex) and are in the form of 'Exxx' where 'xxx' can be any number from '000' to '999'. Error codes can be embedded in any data field within a transmitted record. Certain DDA commands can generate multiple error codes. Refer to the following examples: #### Command NA Hex- <STX><Exxx><ETX><cccc> #### Command 2D Hex: <STX><Exxx:Exxx:ddd.dd><ETX><cccc> #### Command 1E Hex: <STX><E203:dddd.dd:ddddd.dd:E207:dddd.dd><ETX><cccc> **E102**: Missing Float(s) (Level 1 or Level 2) The number of floats measured by the hardware is less than the 'number of floats' control variable. **E201**: No DTs Programmed A request for temperature data has been made with the 'number of DTs' control variable set to equal zero (0) or all programmed DTs are set inactive (for example, DT position data is set equal to zero (0.000)). #### **E212**: *DT Communication Error* The indicated DT is not active (for example, DT position data is set equal to zero (0) or is not responding). #### **DDA User Interface** # Model MG Digital setup software installation, setup and calibration Adjustments to the calibration and
set up parameters of the transmitter can be performed using the M-Series Digital Setup Software package. The software can be run from any PC using a RS-485 to RS-232 converter (see Table 10 MTS part number references). In the 'MTS Digital Gauge Configuration - DDA -COM' window, you will see one tab labeled 'Data From Device' (see Figure 28). You will use this tab and its button selections to calibrate the transmitter and change setup parameters. #### Note: You must use a RS-485 converter with 'Send Data Control' when using the M-Series Digital Setup software to ensure proper operation. Example: B & B Electronics 485BAT3 (815-433-5100 www.bb-elec.com). | Level Plus M-Series PC Digital Setup Software (DDA) CD | RS-485 to RS-232 converter | |--|----------------------------| | Order number: 625053 | Order number: 380075 | Table 10. MTS part number references #### DATA FROM DEVICE TAB Perform the following steps to install the transmitter setup software to establish communications with the transmitter: - 1. Install Setup Software from the CD that came with your transmitter or go to www.mtssensors.com to download the latest version. - 2. Connect transmitter to the RS-485 to RS-232 converter and attach the converter to your PC. Some PC's will require an additional Serial to USB converter. - 3. Open the Software program. - 4. Select **COM Port**. If you do not know which COM port to select, right click My Computer and select Properties -> Hardware Tab -> Device Manager -> Ports (COM & LPT) to view the list. - 5. Click the 'Data From Device' tab, click the **Device:** pull-down and select the 'transmitter address', the factory default for DDA is **192** (see Figure 28). Parameter settings and calibration is performed from within the Data From Device tab window (see Figure 28). #### **DATA FROM DEVICE tab options:** - Calibrate • Change Address COM port - Adjust settings · Backup and restore device settings Figure 28. Data from device tab #### **CALIBRATION** When you click the 'Calibrate' button in the 'Data From Device' tab window, the 'Calibrate DDA Device' window opens. There are two calibration 'Float Methods' to choose from, 'Enter Float Positions (Calibrate)' and 'Enter Float Zero Positions'. Click the 'Offset Method:' drop down menu to select a calibration method. Type a value in the active field, then click the 'Send' button. A confirmation window displays when the send is successful. Figure 29. Calibrate DDA Device window - Offset Method When you choose 'Enter Float Zero Positions' from the 'Offset Method:' drop down menu, you can adjust the offset where the transmitters zero point is located. This adjustment will significantly shorten the span of the transmitter or counter inactive zones. Adjust the value accordingly and click 'Send'. A confirmation window displays when the send is successful. Figure 30. Calibrate DDA Device - Offset Method #### **CHANGE ADDRESS** To change the transmitter address, click the 'Change Address' button in the 'Data From Device' tab window. In the 'Change Address' window, type the 'New Address' in the active field and click 'Change'. A popup window confirms the change is successful. Figure 31. Change Address window - New Address entry #### **BACKUP AND RESTORE DEVICE SETTINGS** If your electronics requires a replacement or if your current settings need to be refreshed, it is recommended that you create a backup or restoration file. To create a backup, click the 'Backup/Restore' button in the 'Data From Device' tab window. In the 'Backup and Restore Device Settings' window, click the 'Get Data From Sensor' button and 'Save Settings to File' button. When prompted, save the file to a designated place where you can find it. To upload a file, click the 'Read Settings from File' button and select your backup file. Click 'Write Data to Sensor'. A popup window confirms the upload is successful. Figure 32. Backup and Restore Device Settings window # **Adjust settings** To adjust settings, click the 'Adjust' button located in the 'Data From Device' tab window (see Figure 28). The 'Adjust DDA Gain' window displays different parameter settings. All transmitters will have the ability to adjust the 'Gain, SARA Blanking and Magnet blanking' from this menu. These parameters are password protected, changes will require assistance from MTS Technical Support. Figure 33. Adjust DDA Gain window #### **COM PORT** To select the Setup Software communication port, click the 'COM Port' button in the 'Data From Device' tab window. Select the appropriate communication port and click 'OK'. Figure 34. Select a COM Port window # **CONTINUOUS UPDATE** To view realtime data using the Setup Software interface, select the 'Continuous Update' box. The Interval may be changed to slow down updates but is not necessary. #### **DATA LOGGING** To download a transmitter data log, Click 'Select File' in the 'Data From Device' tab window. Select an Excel file and check the 'Log Data to File' box to save your data. # M-Series Model MG Digital Operation and Installation Manual Agency Information # **Agency approvals** # FM/CSA # FM/CSA SPECIFIC MODEL MG NUMBER REQUIRED AS SHOWN ON PAGE 8. | Model | Approval Type | Classification | Standard | |--------------|---|---|---| | MGAM
MGAD | Professional Control of the | Class I, Division 1, Groups B, C, D
Class II, Division 1, Groups E, F, G
Division 1, Type 4X
Ta = 71° C | FM 3600:2011
FM 3615:2006
CSA C22.2 No. 0-M91 (R2001)
CSA C22.2 No. 30-M1986 | | | Intrinsically
Safe | Class I, Division 1, Groups A, B, C, D
Class II, Division 1, Groups E, F, G
Division 1, Type 4X
Ta = 71° C | FM 3610:2010
CSA C22.2 No. 157-92 | | MGAF | Explosion Proof | Class I, Division 1, Groups B, C, D
Class II, Division 1, Groups E, F, G
Division 1, Type 4X
Ta = 71° C | FM 3600:2011
FM 3615:2006
CSA C22.2 No. 0-M91 (R2001)
CSA C22.2 No. 30-M1986 | # **ATEX** #### ATEX SPECIFIC MODEL MG NUMBER REQUIRED AS SHOWN ON PAGE 9. | Model | Approval Type | Classification | Standard | |--------------------|-----------------------|---|--| | MGEM Flame
MGED | Flame Proof | FM13ATEX0050X II 1/2 G Ex d IIB T4 Ga/Gb Ta = -20° C to 40° C | EN 60079-0:2012
EN 60079-1:2007
EN 60079-26:2007 | | | Intrinsically
Safe | PTB 04 ATEX 2028X II 1/2 G bzw. II 2 G EEx ia IIB T4 bzw. EEX ia IIA T4 Ta = -20° C to 80° C | EN 50014:1997+A1+A2
EN 50020:2002
EN 50284:1999 | | MGEF | Flame Proof | FM13ATEX0050X II 1/2 G Ex d IIB T4 Ga/Gb Ta = -20° C to 40° C | EN 60079-0:2012
EN 60079-1:2007
EN 60079-26:2007 | # CCOE ### CCOE USES ATEX SPECIFIC MODEL NUMBER AS SHOWN ON PAGE 9. | Model | Approval Type | Classification | Standard | | | |-------|---------------|--|---|--|--| | MGP | Flame Proof | P336577/1
Ex d IIB T4 Ga/Gb
Ta = -20° C to 40° C | EN 60079-0: 2012
EN 60079-1:2007
EN 60079-26:2007 | | | #### KC # KC USES IECEX SPECIFIC MODEL NUMBER AS SHOWN ON PAGE 9, CONSULT 550720 (KOR) FOR DETAILS | Model | Approval Type | Classification | Standard | |-------|---------------|---|--| | MGK | Flame Proof | 14-KB4B0-0300X
Ex d IIB T4 Ga/Gb
Ta = -20° C to 40° C | Announcement No. 2013-54
of Ministry of Employment
and Labor | # Agency approvals (Cont.) #### **IECEX** # IECEX SPECIFIC MODEL MG NUMBER REQUIRED AS SHOWN ON
PAGE 9. | Model | Approval Type | Classification | Standard | | |-------|---------------|----------------------|-------------------|--| | MGHM | Flame Proof | IECEx FMG 13.0019X | IEC 60079-0:2011 | | | MGHD | | Ex d IIB T4 Ga/Gb | IEC 60079-1:2007 | | | MGHF | | Ta = -20° C to 40° C | IEC 60079-26:2006 | | #### **INMETRO** # INMETRO USES ATEX SPECIFIC MODEL NUMBER AS SHOWN ON PAGE 9, CONSULT 550720 (PT) FOR DETAILS | Model | Approval Type | Classification | Standard | |-------|---------------|--|--| | MGB | Flame Proof | TÜV 14.0935
Ex d IIB T4 Ga/Gb
IP66
Ta = -20° C to 40° C | ABNT NBR IEC 60079-0:2008
ABNT NBR IEC 60079-1:2009 e
ABNT NBR IEC 60079-26:2008
Portaria INMETRO no 179 de
18/05/2010 | #### **NEPSI** # NEPSI USES FM/CSA SPECIFIC MODEL MG NUMBER REQUIRED AS SHOWN ON PAGE 8. | Model | Approval Type | Classification | Standard | |---------------|---------------|--|--------------------------------| | MGAM | Flame Proof | Ex d IIB T4 Gb | GB3836.1-2010 | | MGAD | | Ta = -20° C to 60° C | GB3836.2-2010 | | Intrinsically | | Ex ia IIC T4 | GB3836.1-2000 | | Safe | | Ta = -20° C to 60° C | GB3836.4-2000 | | MGAF | Flame Proof | Ex d IIB T4 Gb
Ta = -20° C to 60° C | GB3836.1-2010
GB3836.2-2010 | # **ABS** MTS Sensors has Type Approval on the MG level transmitter. Please see attached certificate or listing on the ABS website for more details. # Hazardous area installation #### FM/CSA FOR MODBUS AND DDA Figure 35. Modbus and DDA installation drawing # Agency Information, FM/CSA for Modbus and DDA # **INSTALLATION DRAWING NOTES (FIGURE 35)** | | Approval agency | | Approval type | | | Ground connection | | |--------------|-----------------|-----|---------------|----|--|---------------------|--| | Model number | FM | CSA | EX | IS | Approval classification | (Figure references) | | | MGA _ B | Х | X | Χ | | CL. I, DIV. 1, GR. B, C, D
CL. II, DIV. 1, GR. E,F,G CLASS III | Figure 36 | | | | Х | Х | | Х | CL. I, DIV. 1, GR. A, B, C, D
CL. II, DIV. 1, GR. E,F,G CLASS III | | | | MGA _ C | Х | X | Χ | | CL. I, DIV. 1, GR. B, C, D
CL. II, DIV. 1, GR. E,F,G CLASS III | Figure 37 | | | | Х | Х | | Х | CL. I, DIV. 1, GR. A, B, C, D
CL. II, DIV. 1, GR. E,F,G CLASS III | | | | MGA _L | Χ | Χ | | Χ | CL. I, DIV. 1, GR. A, B, C, D Figure 38 | | | | MGA _3 | Х | Х | | Х | CL. I, DIV. 1, GR. A, B, C, D
CL. II, DIV. 1, GR. E,F,G CLASS III | Figure 39 | | Table 11. Product Model / Hazardous location breakdown, Modbus DDA #### **WIRING CONNECTIONS** Figure 36. Single cavity housing #### Note: Ground screw provided in housing to connect gauge housing to earth ground. Figure 37. Dual cavity housing # Agency Information, FM/CSA for Modbus and DDA # **WIRING CONNECTIONS (CONTINUED)** #### Note: The transient protection pin on the connector (pin 6) is designated as the enclosure earth ground and should be at the same potential as the zener barrier earth ground. | Wiring diagram (MGL) | | | | | |----------------------|----------------------|--|--|--| | Pin number | Signal | | | | | Pin 1 | 24 Vdc Power | | | | | Pin 2 | 0 Vdc Power | | | | | Pin 3 | Earth ground | | | | | Pin 4 | RX TX+ | | | | | Pin 5 | RX TX - | | | | | Pin 6 | Transient protection | | | | Figure 38. NEMA housing with connector #### Note: On customer installed cable version, customer to attach earth ground lead to connector as shown below and install transient protection lead (cable shield) with ground screw, lock washer, terminal cup, and bracket as shown above. Figure 39. NEMA housing with terminal block # ATEX, IECEx, and CCoE for Modbus and DDA Figure 43a. ATEX IS for Modbus and DDA installation drawing #### Agency Information, ATEX, IECEx, and CCoE for Modbus and DDA # **INSTALLATION DRAWING NOTES (CONTINUED)** Figure 43b. ATEX, IECEx, and CCoE Flameproof for Modbus and DDA installation drawing # Agency Information, ATEX, IECEx, and CCoE for Modbus and DDA # **INSTALLATION DRAWING NOTES (CONTINUED)** | Model
Number | Approval Agency | | Approval Type | | Approval classifications | Ground
Connection
(Figure
reference) | | | |-----------------|-----------------|--------------|---------------|----------------|--------------------------|---|---|-----------| | Modbus/
DDA | PTB
(ATEX) | FM
(ATEX) | FM
(IECEx) | PESO
(CCoE) | Intrinsically
Safe | Flame
Proof | | | | MGH_B | | | Х | | | Х | Ex d IIB T4 Ga/Gb | Figure 45 | | MGH_C | | | Х | | | Х | Ex d IIB T4 Ga/Gb | Figure 46 | | MGE _ B | | Χ | | | | Χ | €x II 1/2 G Ex d IIB T4 Ga/Gb | Figure 45 | | MGE _ C | | Х | | | | Х | Ex II 1/2 G Ex d IIB T4 Ga/Gb | Figure 46 | | MGP_B | | | | Χ | | Χ | Ex d IIB T4 Ga/Gb | Figure 45 | | MGP_C | | | | Χ | | Χ | Ex d IIB T4 Ga/Gb | Figure 46 | | MGE _ F | Χ | | | | X | | €x II 1/2 G bzw. II 2 G EEx ia IIA T4 | Figure 44 | | MGE _ G | Х | | | | Х | | ξx II 1/2 G bzw. II 2 G EEx ia IIA T4 | Figure 45 | | MGE _ H | Х | | | | Х | | Œx II 1/2 G bzw. II 2 G EEx ia IIA T4 | Figure 46 | | MGE_P | Χ | | | | Х | | ⟨Ex⟩ I 1/2 G bzw. II 2 G EEx ia IIB T4 | Figure 44 | | MGE _ R | Х | | | | X | | €x II 1/2 G bzw. II 2 G EEx ia IIB T4 | Figure 45 | | MGE_S | Х | | | | Х | | €x II 1/2 G bzw. II 2 G EEx ia IIB T4 | Figure 46 | | MGE _ 4 | Х | | | | Х | | Œx II 1/2 G bzw. II 2 G EEx ia IIB T4 | Figure 44 | | MGE _ 5 | Х | | | | Х | | Œx II 1/2 G bzw. II 2 G EEx ia IIA T4 | Figure 44 | Figure 43c ATEX, IECEx, and CCoE for Modbus and DDA installation drawing (continued) #### **WIRING AND CONNECTIONS** #### Wiring diagram (MGE F, MGE P) | 3 3 . | (/ - / | |------------|----------------------| | Wire color | Signal | | Red | 24 Vdc Power | | Black | 0 Vdc Power | | Blue | Earth ground | | White | RX TX+ | | Green | RX TX - | | Drain wire | Transient protection | #### Note: On customer installed cable version, customer to attach earth ground lead to connector as shown below and install transient protection lead (cable shield) with ground screw, lock washer, and bracket as shown above. Figure 44. NEMA housing with terminal strip or integral cable # Note: Ground terminal provided in housing to connect gauge housing to earth ground. # Agency Information, ATEX, IECEx, and CCoE for Modbus and DDA # WIRING AND CONNECTIONS (CONTINUED) Figure 45. Single cavity housing #### Note: Ground terminal provided in housing to connect gauge housing to earth ground. Figure 46. Dual cavity housing #### **SPECIAL CONDITIONS FOR USE** - Model MG sensors may only be connected to certified intrinsically safe circuits (Ex ia or Ex ib). - The electronics housing is to be installed in zone 1 (category 2G, EPL Gb). The sensor pipe/hose may be installed in zone 0 (category 1, EPL Ga) if not restricted below. - Equipotential bonding shall be installed inside and outside the hazardous area along the cable for supply and data. - Float usage: - Metallic floats may only be used if they have a weight offset (asymmetric weight distribution). - Metallic floats on non-metallic pipes may not be used. - Aluminum floats may not be used. - Plastic floats may only be installed in hazardous areas which require apparatus of category 1G (for zone 0) with explosion group IIA. Plastic floats may not be used on non-metallic pipes. - Sensors with flexible measuring hoses: - The hose has to be mechanically protected from external impacts which may affect its function as separation wall. - Avoid kinking or bending the flexible hose in less than 16 inch (406 mm) diameter. - · Consult MTS if dimensional information on flameproof joints are necessary. #### FM/CSA installation drawings for FOUNDATION™ fieldbus Figure 51. FOUNDATION™ fieldbus installation drawing #### **Model MG Operation and Installation Manual** #### Agency Information, FM/CSA FOUNDATION™ fieldbus #### **INSTALLATION DRAWING NOTES** | Model number | Approval agencies | | Approval types | | Ground connection | |----------------------|-------------------|-----|----------------|---|---------------------| | FOUNDATION™ fieldbus | FM | CSA | EX | Approval classifications | (Figure references) | | MGAFB
MGASB | X | Х | Χ | CL. I, DIV. 1, GR. B, C, D
CL. II, DIV. 1, GR. E,F,G CLASS III | Figure 54 | | MGAFC
MGASC | Χ | Х | Χ | CL. I, DIV. 1, GR. B,C,D
CL. II, DIV. 1, GR. E,F,G CLASS III | Figure 55 | | MGAFL | | | | | Figure 52 | | MGAF3 | | | | | Figure 53 | **Figure 51b.** FOUNDATION™ fieldbus installation drawing (continued) #### **WIRING CONNECTIONS** #### Note: The transient protection pin on the connector (pin 4) is designated at the enclosure earth ground and should be at the same potential as the zener barrier earth ground. #### Wiring diagram (Reference Figure 51) | Pin No. | Signal | Wire color | |---------|---------|---------------------| | 1 | BUS - | Blue | | 2 | BUS + | Brown | | 3 | N/C | Bare (Shield/Drain) | | 4 | EMC GND | Green/Yellow | #### Detail A-A See wiring diagram table Figure. 52. NEMA housing with connector (Not Agency Approved) #### **WIRING CONNECTIONS (CONTINUED)** #### Note: Note: When the customer is installing the cable, the customer will attach the earth ground lead to the connector as shown in Figure 53 and install transient the protection lead (cable sheild) with the ground screw, lockwasher, terminal cup, and bracket as shown in Detail A. Figure 53. NEMA housing with terminal block (Not Agency Approved) # Ground screw provided in housing to connect gauge housing to earth ground. Figure 54. Single cavity housing Ground screw #### **Model MG Operation and Installation Manual** #### Agency Information, FM/CSA for FOUNDATION™ fieldbus
WIRING CONNECTIONS (CONTINUED) Figure. 55. Dual cavity housing #### ATEX, IECEx, and CCoE installation drawings for FOUNDATION™ fieldbus Figure 57. FOUNDATION™ fieldbus Flameproof installation drawing Agency Information, ATEX, IECEx, and CCoE for FOUNDATION $^{\text{\tiny TM}}$ fieldbus #### **INSTALLATION DRAWING NOTES** | | Approval agencies | | | Approval
types | | Ground | |--------------------------------------|-------------------|---------------|----------------|-------------------|----------------------------------|-----------------------------------| | Model number
Foundation™ fieldbus | FM
(ATEX) | FM
(IECEx) | PESO
(CCoE) | Flame Proof | Approval classifications | connection
(Figure references) | | MGHFB
MGHSB | | X | | X | Ex d IIB T4 Ga/Gb | Figure 58 | | MGHFC
MGHSC | | X | | Х | Ex d IIB T4 Ga/Gb | Figure 59 | | MGEFB
MGESB | Χ | | | Χ | Œx II 1/2 G
Ex d IIB T4 Ga/Gb | Figure 58 | | MGEFC
MGESC | Х | | | X | ηII 1/2 G
Ex d IIB T4 Ga/Gb | Figure 59 | | MGPFB
MGPSB | | | Χ | Х | Ex d IIB T4 Ga/Gb | Figure 58 | | MGPFC
MGPSC | | | Х | X | Ex d IIB T4 Ga/Gb | Figure 59 | **Figure 57b.** FOUNDATION™ fieldbus installation drawing (continued) #### **WIRING CONNECTIONS** #### Note: Ground screw provided in housing to connect gauge housing to earth ground. Figure 58. Single cavity housing #### Note: Ground screw provided in housing to connect gauge housing to earth ground. Figure. 59. Dual cavity housing #### Special Conditions, ATEX, IECEx, and CCoE FOUNDATION fieldhouse #### **SPECIAL CONDITIONS FOR USE** - Model MG sensors may only be connected to certified intrinsically safe circuits (Ex ia or Ex ib). - The electronics housing is to be installed in zone 1 (category 2G, EPL Gb). The sensor pipe/hose may be installed in zone 0 (category 1, EPL Ga) if not restricted below. - Equipotential bonding shall be installed inside and outside the hazardous area along the cable for supply and data. - Float usage: - Metallic floats may only be used if they have a weight offset (asymmetric weight distribution). - Metallic floats on non-metallic pipes may not be used. - Aluminum floats may not be used. - Plastic floats may only be installed in hazardous areas which require apparatus of category 1G (for zone 0) with explosion group IIA. Plastic floats may not be used on non-metallic pipes. - Sensors with flexible measuring hoses: - The hose has to be mechanically protected from external impacts which may affect its function as separation wall. - Avoid kinking or bending the flexible hose in less than 16 inch (406 mm) diameter. - Consult MTS if dimensional information on flameproof joints are necessary. #### Physikalisch-Technische Bundesanstalt Braunschweig und Berlin #### (1) EC-TYPE-EXAMINATION CERTIFICATE (Translation) - (2) Equipment and Protective Systems Intended for Use in Potentially Explosive Atmospheres - Directive 94/9/EC - (3) EC-type-examination Certificate Number: #### PTB 04 ATEX 2028 X - (4) Equipment: Level transmitter Level Plus M-Series, types M - (5) Manufacturer: MTS Sensor Technologie GmbH & Co.KG - (6) Address: Auf dem Schüffel 9, 58513 Lüdenscheid, Germany - (7) This equipment and any acceptable variation thereto are specified in the schedule to this certificate and the documents therein referred to. - (8) The Physikalisch-Technische Bundesanstalt, notified body No. 0102 in accordance with Article 9 of the Council Directive 94/9/EC of 23 March 1994, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II to the Directive. The examination and test results are recorded in the confidential report PTB Ex 04-21300. (9) Compliance with the Essential Health and Safety Requirements has been assured by compliance with: EN 50014:1997 + A1 + A2 EN 50020:2002 EN 50284:1999 - (10) If the sign "X" is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate. - (11) This EC-type-examination Certificate relates only to the design, examination and tests of the specified equipment in accordance to the Directive 94/9/EC. Further requirements of the Directive apply to the manufacturing process and supply of this equipment. These are not covered by this certificate. - (12) The marking of the equipment shall include the following: (II 1/2 G resp. II 2 G EEx ia IIB T4 resp. EEx ia IIA T4 Zertifizierungsstelle Explosionsschutz By order: Braunschweig, July 08, 2004 Dr.-Ing. U. Johannsn Regierungsdirektor sheet 1/3 EC-type-examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by the Physikalisch-Technische Bundesanstalt. In case of dispute, the German text shall prevail. Physikalisch-Technische Bundesanstalt • Bundesallee 100 • D-38116 Braunschweig #### Physikalisch-Technische Bundesanstalt Braunschweig und Berlin #### SCHEDULE #### (14) EC-TYPE-EXAMINATION CERTIFICATE PTB 04 ATEX 2028 X #### (15) Description of equipment The level transmitter Level Plus M-Series types M ... is used for the continuous measurement of levels or for the interface detection of liquids in containers in the hazardous area. The level transmitters consist of a housing for the electronics, the process connection elements and the sensor element with float. Depending on the design, the level sensors are used in hazardous areas of explosion group II A (marking 🖾 II 1/2 G or 2 G EEx ia IIA T4) or explosion group IIB (marking 🖾 II 1/2 G or 2 G EEx ia IIB T4). For variants reference is made to the type code. #### Category-1/2-apparatus The housing for the electronics will be installed in hazardous areas which require apparatus of category 2. The process connection elements will be mounted into the partition which separates areas from each other requiring apparatus of category 2 or 1. The sensor element will be installed in areas which require category-1-apparatus. #### Category-2- apparatus The level transmitters will be installed in hazardous areas for category-2-apparatus. The assignment of maximum permissible ambient temperature and supplied power shall be taken from the table below. #### Electrical data Supply and data circuits Only for connection to certified intrinsically safe circuits. #### Maximum values: $U_i = 28 V$ $\Sigma I_i = 200 \text{ mA}$ C_i negligibly low Li negligibly low sheet 2/3 EC-type-examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by the Physikalisch-Technische Bundesanstalt. In case of dispute, the German text shall prevail. Physikalisch-Technische Bundesanstalt • Bundesallee 100 • D-38116 Braunschweig #### Physikalisch-Technische Bundesanstalt Braunschweig und Berlin #### SCHEDULE TO EC-TYPE-EXAMINATION CERTIFICATE PTB 04 ATEX 2028 X | total power ΣP | ambient temperature at the electronics | | | |------------------------|--|--|--| | 1,3 W | - 20 +40 °C | | | | 1,2 W | - 20 +60 °C | | | | 1,0 W | - 20 +80 °C | | | For applications requiring category-1-apparatus the process pressure of the media shall range from 0.8 up to 1.1 bar and the medium temperature from -20 up to +60 °C (atmospheric condiditons). In case of a deviation from these conditions at the sensor element it shall be considered that the sensor (even in case of fault) does not show any self-heating and that the operating company is responsible for the safe operation of the system as regards the pressures / temperatures of the media used. The manufacturer's specifications shall be considered in this process. #### (16) Test report PTB Ex 04-21300 #### (17) Special conditions for safe use - Since the supply and data circuits of the level transmitters are operationally grounded, equipotential bonding shall be installed inside and outside the hazardous area along the cable run of the supply and data circuits. - 2. Level transmitters equipped with plastic floats may be installed only in hazardous areas which require apparatus of category 1 / explosion group IIA. #### (18) Essential health and safety requirements met by compliance with the standards mentioned above Zertifizierungsstelle E By order: Dr.-Ing. U. Johannsm Regierungsdirektor Braunschweig, July 08, 2004 sheet 3/3 EC-type-examination Certificates without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by the Physikalisch-Technische Bundesanstalt. In case of dispute, the German text shall prevail. Physikalisch-Technische Bundesanstalt • Bundesallee 100 • D-38116 Braunschweig 6 #### **EC-TYPE EXAMINATION CERTIFICATE** Equipment or Protective systems intended for use in Potentially Explosive Atmospheres - Directive 94/9/EC 3 **EC-Type Examination Certificate No:** FM13ATEX0050X 4 Equipment or protective system: Model MG and MR Liquid Level Transmitters (Type Reference and Name) 5 Name of Applicant: MTS Systems Corporation Address of Applicant: 3001 Sheldon Drive Cary, NC 27513 - 7 This equipment or protective system and any acceptable variation thereto is specified in the schedule to this certificate and documents therein referred to. - 8 FM Approvals Ltd, notified body number 1725 in accordance with Article 9 of Directive 94/9/EC of 23 March 1994, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment intended for use in potentially explosive atmospheres given in Annex II to the Directive. The examination and test results are
recorded in confidential report number: 3047518 dated 11th November 2013 Compliance with the Essential Health and Safety Requirements, with the exception of those identified in item 15 of the schedule to this certificate, has been assessed by compliance with the following documents: EN60079-0: 2012, EN60079-1: 2007, EN60079-26: 2007, EN60529:1991 + A1: 2000 - 10 If the sign 'X' is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate. - 11 This EC-Type Examination certificate relates only to the design, examination and tests of the specified equipment or protective system in accordance to the directive 94/9/EC. Further requirements of the Directive apply to the manufacturing process and supply of this equipment or protective system. These are not covered by this certificate. - The marking of the equipment or protective system shall include: II 1/2 G Ex d IIB T4 Ga/Gb Ta = -20°C to +40°C; IP66 Mick Gower Certification Manager, FM Approvals Ltd. Issue date: 12th November 2013 #### THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE FM Approvals Ltd. 1 Windsor Dials, Windsor, Berkshire, UK. SL4 1RS T: +44 (0) 1753 750 000 F: +44 (0) 1753 868 700 E-mail: atex@fmapprovals.com www.fmapprovals.com F ATEX 020 (May/12) Page 1 of 3 #### **SCHEDULE** to EC-Type Examination Certificate No. FM13ATEX0050X #### 13 **Description of Equipment or Protective System:** The Model MG and MR Liquid Level Transmitters are 4-20 mA level transmitters. The electronics are housed in either a single cavity or dual cavity enclosure manufactured by Adalet and ATEX-certified under DEMKO 07 ATEX 0622294U as Ex d IIC/IIB+H2 Gb; IP66. The enclosures are supplied with either blind or window covers. The sensor housing (probe) are of two constructions: rigid or flexible. Both assemblies feature a welded end cap and a welded stainless steel adapter which provides a \(^3\)/4 inch NPT connection to the electronics enclosure. The rigid probe is constructed of either stainless steel, Hastelloy C-276 or Monel K-500. The flex probe is a stainless steel, all welded annularly corrugated hose with a stainless steel overbraid. An independent float containing permanent magnets rides on the outside of the sensor housing. The Model MG and MR Liquid Level Transmitters operate on 10.5 to 30 Vdc (100 mA maximum). The transmitters are intended for use in an ambient temperature of -20°C to +40°C and with process temperatures up to +125°C at a pressure of 1000 psi (rigid probes) or 435 psi (flex probes). #### MGabcdefghijkl. Liquid Level Transmitter. - a = Agency approval E or H. - b = Output M, D, F, S, T or X. - c = Housing type B, C, V or W. - d = Electronics mounting 1, 3, 4, 5 or 6. e = Sensor pipe B, C, D, E, F, M, N, P or R. - f = Material of construction 1, 2, 3, 9 or A. - g = Process connection type 1, 4, 5, 6, 7, 8, 9 or X. - h = Process connection size A, B, C, D, E, F, G, H, J or X. - i = Digital thermometer 0, 1, 2, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, J, K or - j = Unit of measure M or U. - k = Length (five digits maximum representing sensor length in millimeters or inches). - I = Special È or S. #### MRabcdefghijkl. Liquid Level Transmitter. - a = Agency approval E or H. - b = Output 1, 2, 3, 4 or X. - c = Housing type B, C, D, E, V, W, Y or Z. - d = Electronics mounting 1, 3, 4, 5 or 6. e = Sensor pipe B, C, D, E, F, H, J, K or R. - f = Material of construction 1, 2, 3, 9 or A. - g = Process connection type 1, 4, 5, 6, 7, 8, 9 or X. - h = Process connection size A, B, C, D, E, F, G, H, J or X. - i = RTD 0, 1 or 2. - j = Unit of measure M or U. - k = Length (five digits maximum representing sensor length in millimeters or inches) - I = Special E or S. #### Special Conditions for Safe Use: Consult the manufacturer if dimensional information on the flameproof joints is necessary. #### **Essential Health and Safety Requirements:** 15 The relevant EHSRs that have not been addressed by the standards listed in this certificate have been identified and assessed in the confidential report identified in item 8. #### THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE FM Approvals Ltd. 1 Windsor Dials, Windsor, Berkshire, UK. SL4 1RS T: +44 (0) 1753 750 000 F: +44 (0) 1753 868 700 E-mail: <u>atex@fmapprovals.com</u> <u>www.fmapprovals.com</u> F ATEX 020 (May/12) Page 2 of 3 #### **SCHEDULE** to EC-Type Examination Certificate No. FM13ATEX0050X #### 16 Test and Assessment Procedure and Conditions: This EC-Type Examination Certificate is the result of testing of a sample of the product submitted, in accordance with the provisions of the relevant specific standard(s), and assessment of supporting documentation. It does not imply an assessment of the whole production. Whilst this certificate may be used in support of a manufacturer's claim for CE Marking, FM Approvals Ltd accepts no responsibility for the compliance of the equipment against all applicable Directives in all applications. This Certificate has been issued in accordance with FM Approvals Ltd's ATEX Certification Scheme. #### 17 Schedule Drawings A list of the significant parts of the technical documentation is annexed to this certificate and a copy has been kept by the Notified Body. #### 18 Certificate History Details of the supplements to this certificate are described below: | Date | Description | |--------------------------------|-----------------| | 12 th November 2013 | Original Issue. | # FM Approvals #### THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE FM Approvals Ltd. 1 Windsor Dials, Windsor, Berkshire, UK. SL4 1RS T: +44 (0) 1753 750 000 F: +44 (0) 1753 868 700 E-mail: atex@fmapprovals.com www.fmapprovals.com href="mailto:www.fmapproval F ATEX 020 (May/12) Page 3 of 3 #### **Certificate of Compliance** **Certificate:** 1002006 (LR 81728) **Master Contract:** 156704 Project: 2472822 Date Issued: February 6, 2012 Issued to: MTS Systems Corporation Sensors Division 3001 Sheldon Dr Cary, NC 27513 USA Attention: Birch Bulkowski #### The products listed below are eligible to bear the CSA Mark shown Darrelyn Smith Issued by: Darrelyn Smith **PRODUCTS** CLASS 2258 02 - PROCESS CONTROL EQUIPMENT - For Hazardous Locations CLASS 2258 04 - PROCESS CONTROL EQUIPMENT - Intrinsically Safe, Entity - For Hazardous Locations CLASS 2258 02 Class I, Groups B, C and D; Class II, Groups E, F and G; Class III; Enclosure 4X: - M-SERIES Level Gauge, Types MRAabcdefghijjjjk, rated 36V dc max., 4-20 mA; Suffixes in Type number denote electronics options, housing type, mounting, materials, process connections and sensor length. Class I, Division 2, Groups A, B, C and D; Enclosure 4X: - M-SERIES Digital Level Gauge, Types MGAx#xxxxxxxxxxx, where # = A, B, C, D, E, 3, 6, 7, or 9; rated 30 Vdc max., 100 mA; Suffixes in Type number denote electronics options, output, mounting, materials, process connections and sensor length. CLASS 2258 04 DQD 507 Rev. 2009-09-01 Page: 1 **Project:** 2472822 **Date Issued:** February 6, 2012 Class I, Groups A, B, C and D; Class II, Groups E, F and G; Class III; Enclosure 4X: - M-SERIES Level Gauge, Types MRAabcdefghijjjjk, rated 36V dc max., 4-20 mA; intrinsically safe when connected per installation Drawing 650805, Temp. Code T4; suffixes in Type number denote electronics options, housing type, mounting, materials, process connections and sensor length. - MC420 Level Gauge, rated $36V\ dc$, 4-20 mA; intrinsically safe when connected per installation Drawing 650805, Temp. Code T4. - M-SERIES Digital Level Gauge, Types MGAx#xxxxxxxxxxx, where # = A, B, C, D, E, L, 3, 6, 7, 8, or 9 (MGAxL and MGAx8 suitable for Class I locations only); rated 30 Vdc max., 100 mA; intrinsically safe when connected per installation drawing 650838, temp. code T4; suffixes in Type number denote electronics options, output, mounting, materials, process connections and sensor length. Class I, Groups A, B, C and D; Enclosure 4X: - M-SERIES USTD/PTM Level Gauge, Type MUAxUxxxxxxxxxxx; rated 30 Vdc max., 100 mA; intrinsically safe when connected per installation drawing 650844, temp. code T4; suffixes in Type number denote electronics options, output, mounting, materials, process connections and sensor length. Class I, Groups A, B, C and D: - M-SERIES Digital Level Gauge, Type MVUxxxS; rated 30 Vdc max., 100 mA; intrinsically safe when connected per installation drawing 650838, temp. code T4; xxx in Type number denotes sensor length. #### APPLICABLE REQUIREMENTS CSA Std C22.2 No. 0-10- General Requirements - Canadian Electrical Code Part II $CSA\ Std\ C22.2\ No.\ 25\text{-}1966\ (R\ 2009)-Enclosures\ for\ Use\ in\ Class\ II,\ Groups\ E,\ F\ and\ G\ Hazardous\ Locations$ CSA Std C22.2 No. 30-M1986 (R 2007) - Explosion-Proof Enclosures for Use in Class I Hazardous Locations CAN/CSA-C22.2 No. 94-M91(R 2006) - Special Purpose Enclosures CSA Std C22.2 No. 142-M1987 (R 2009) - Process Control Equipment CAN/CSA-C22.2 No. 157-92 (R 2006) - Intrinsically Safe and Non-incendive Equipment for Use in Hazardous Locations CSA Std C22.2 No. 213-M1987 (R 2008)- Non-Incendive Electrical Equipment for Use in Class I Division 2 Hazardous Locations DQD 507 Rev. 2009-09-01 FM Approvals 1151 Boston Providence Turnpike P.O. Box 9102 Norwood, MA 02062 USA T: **781 762 4300** F: 781-762-9375 www.fmapprovals.com #### **CERTIFICATE OF COMPLIANCE** HAZARDOUS (CLASSIFIED) LOCATION ELECTRICAL EQUIPMENT This certificate is issued for the following equipment: ``` MGAabcdefghijk. M-Series Digital Level Transmitters. ``` XP / I / 1 / BCD / T6 Ta = 71°C; DIP / II,III / EFG / T6 Ta = 71°C; Type 4X IS / I,II,III / 1 / ABCDEFG / T4 Ta = 71°C - 650838; Entity; Type 4X $NI/I/2/ABCD/T4Ta = 71^{\circ}C$; Type 4X
Entity Parameters: $V_{Max} = 28 \text{ V}, I_{Max} = 200 \text{ mA}, C_i = 0 \mu\text{F}, L_i = 0 \text{ mH}.$ a = Output M, D, O, N or T. b = Housing Type A, B, C, D, E, L, 3, 6, 7, 8 or 9 (A, 3, 9 are IS only) (L, 8 are IS, Class I only) (B, C, D, E, 6, 7 are XP or IS). c = Electronics Mounting 1, 3, 4, 5 or 6. d = Sensor Pipe B, C, D, E, F, M, N, P, R, S, T, U, 1, 2 or 3. e = Material of Construction 1, 2, 3, 9, A or C. f = Process Connection Type 1, 4, 5, 6, 7, 8 or X. g = Process Connection Size A, B, C, D, E, F, G, H, J or X. h = DT 0, 1, 2, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, J, K or L. i = Unit of Measure M or U. i = Length. k = Special S, E or R. #### MGAabcdefghijk. M-Series Digital Level Transmitters. XP/I/1/BCD/T6 Ta = 71°C; DIP/II,III/1/EFG/T6 Ta = 71°C; Type 4X a = Output M, D, F, O, N, S or T. b = Housing Type B, C, D, E, 6 or 7. c = Electronics Mounting 1, 3, 4, 5 or 6. d = Sensor pipe B, C, D, E, F, M, N, P, R, S, T, U, 1, 2, or 3. e = Material of Construction 1, 2, 3, 9, A or C. f = Process Connection Type 1, 4, 5, 6, 7, 8 or X. g = Process Connection Size A, B, C, D, E, F, G, H, J or X. h = DT 0, 1, 2, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, J, K or L. i = Unit of Measure M or U. j = Length. 3006790 k = Special S, E or R. #### USTD II abcdef M-Series Digital Level Transmitters. IS / I / 1 / ABCD / T4 Ta = 71° C - 650838; Entity; Type 4X **Entity Parameters:** $V_{\text{Max}} = 28 \text{ V}, I_{\text{Max}} = 200 \text{ mA}, C_i = 0 \mu\text{F}, L_i = 0 \text{ mH}.$ a = Unit of Measure. M or U. b = Length (X through XXXX). c = Process connection type H or A. d = Cable S or C. e = Output D or M. #### MRabcdefghijkS. M-Series Level Transmitters. XP/I/1/BCD/T6 Ta = 71°C DIP / II,III / 1 / EFG / T6 Ta = 71°C; Type 4X IS / I,II,III / 1 / CDEFG / T4 Ta = 71°C - 650805-1 Entity; Type 4X **Entity Parameters:** $V_{\text{Max}} = 28 \text{ V}$, $I_{\text{Max}} = 118 \text{ mA}$, $C_i = 0 \text{ } \mu\text{F}$, $L_i = 220 \text{ } \mu\text{H}$. a = Agency Approval A, F, X. b = Output 1, 2, 3 or 4. c = Housing type A, B, C, D, E, L, M or 3, V, W, Y or Z (A, L, M or 3 intrinsically safe only). d = Electronics mounting 1, 2, 3, 4, 5, 6. e = Sensor pipe B, C, D, E, F, H, J, K, L, R, S, T, U, 1, 2 or 3. f = Material of construction 1, 2, 3, 9, A or C g = Process connection type 1, 3, 4, 5, 6, 7, 8 or X. h = Process connection size A, B, C, D, E, F, G, H, J or X. i = RTD 0, 1 or 2. j = Unit of measure M or U. k = Length I = Special S or E. #### MRabcdefghijkl. M-Series Level Transmitters. XP/I/1/BCD/T6 Ta = 71°C DIP / II,III / 1 / EFG / T6 Ta = 71°C; Type 4X IS / I,II,III / 1 / DEFG / T4 Ta = 71°C - 650805-1 Entity; Type 4X Entity Parameters: $V_{Max} = 28 \text{ V}, I_{Max} = 118 \text{ mA}, C_i = 0 \mu\text{F}, L_i = 220 \mu\text{H}.$ a = Agency Approval A, F, X. b = Output 1, 2, 3 or 4. c = Housing type A, B, C, D, E, L, M or 3, V, W, Y or Z (A, L, M or 3 intrinsically safe only). d = Electronics mounting 1, 2. e = Sensor pipe B, C, D, E, F, H, J, K, L, R, S, T, U, 1, 2 or 3. f = Material of construction 1, 2, 3, 9, A or C. g = Process connection type 1, 3, 4, 5, 6, 7, 8 or X. h = Process connection size A, B, C, D, E, F, G, H, J or X. i = RTD 0, 1 or 2. j = Unit of measure M or U. k = Length I = Special S or E. #### MC420abc. M-Series Level Transmitters. IS / I,II,III / 1 / CDEFG / T4 Ta = 71°C - 650805-1 Entity; Type 4X Entity Parameters: VMax = 28 V, IMax = 118 mA, Ci = 0 μF, Li = 220 μH. a = Length 011 to 216. b = Agency Approval F. c = Options S, N, 1, 2, 3. 3006790 #### **Model MG Operation and Installation Manual** #### **Agency Information, FM Approval** #### **Equipment Ratings:** MGA – Explosionproof for Class I, Division 1, Groups B, C, D; Dust-Ignitionproof for Class II, III Division 1, Groups E, F & G; Intrinsically Safe for Class I, II, III Division 1, Groups A, B, C, D, E, F & G Hazardous (Classified) outdoor (Type 4X) locations in accordance with Entity requirements and MTS Installation Drawing 650838 USTD II - Intrinsically Safe for Class I, Division 1, Groups A, B, C, D Hazardous (Classified) outdoor (Type 4X) locations in accordance with Entity requirements and MTS Installation Drawing 650838 MR - Explosionproof for Class I, Division 1, Groups B, C, D; Dust-Ignitionproof for Class II, III Division 1, Groups E, F & G; Intrinsically Safe for Class I, II, III Division 1, Groups C, D, E, F & G Hazardous (Classified) outdoor (NEMA Type 4X) locations in accordance with Entity requirements and MTS Installation Drawing 650805-1 MR - Explosionproof for Class I, Division 1, Groups B, C, D; Dust-Ignitionproof for Class II, III Division 1, Groups E, F & G; Intrinsically Safe for Class I, II, III Division 1, Groups D, E, F & G Hazardous (Classified) outdoor (NEMA Type 4X) locations in accordance with Entity requirements and MTS Installation Drawing 650805-1 MC420 - Intrinsically Safe for Class I, II, III Division 1, Groups C, D, E, F & G Hazardous (Classified) outdoor (NEMA Type 4X) locations in accordance with Entity requirements and MTS Installation Drawing 650805-1 #### FM Approved for: MTS Systems Corporation Sensors Division Cary, NC USA This certifies that the equipment described has been found to comply with the following Approval Standards and other documents: | Class 3600 | 2011 | |---------------|------| | Class 3610 | 2010 | | Class 3615 | 2006 | | Class 3810 | 2005 | | ANSI/NEMA 250 | 1991 | Original Project ID: 3006790 Approval Granted: March 27, 2000 #### Subsequent Revision Reports / Date Approval Amended | D | Б. | D (N) | 5 . | |---------------|--------------------|---------------|----------------| | Report Number | Date | Report Number | Date | | 3008314 | July 17, 2000 | 3041372 | March 26, 2012 | | 3008777 | September 8, 2000 | 3045596 | June 14, 2013 | | 3009320 | October 23, 2000 | | | | 3011770 | September 24, 2001 | | | | 3010813 | November 26, 2001 | | | | 3013732 | March 18, 2002 | | | | 3014667 | October 25, 2002 | | | | 031113 | November 26, 2003 | | | | 040115 | February 2, 2004 | | | | 040624 | July 7, 2004 | | | | 040830 | October 1, 2004 | | | | 050915 | September 22, 2005 | | | | 060424 | May 4, 2006 | | | | 060619 | August 9, 2006 | | | | 070917 | September 20, 2007 | | | | 071024 | October 29, 2007 | | | | 080310 | March 31, 2008 | | | | 080430 | July 24, 2008 | | | | 100720 | August 31, 2010 | | | FM Approvals LLC J.E. Marquedant Group Manager, Electrical 14 June 2013 Date ### EXPLOSION PROTECTION CERTIFICATE OF CONFORMITY #### Cert NO.GYJ13.1037X This is to certify that the product Multifunctional Magnetostrictive Level Plus Liquid Level Transmitter manufactured by MTS Systems Corporation (Address: 3001 Sheldon Drive, Cary, NC 27513, USA) which model is MGAab c series Ex marking Ex d II B T4 Gb product standard drawing number 401673, 401678 has been inspected and certified by NEPSI, and that it conforms to GB 3836.1-2010,GB 3836.2-2010 This Approval shall remain in force until 2018.02.26 Remarks 1. Conditions for safe use are specified in the attachment to this certificate. 2.Symbol "X" placed after the certification number denotes specific conditions of use. which are specified in the attachment to this certificate. 3. Model designation is specified in the attachment to this certificate. Director National Supervision and Inspection Centre for Explosion Protection and Safety of Instrumentation Issued Date 2013.02.27 This Certificate is valid for products compatible with the documents and samples approved by NEPSI. 103 Cao Bao Road Shanghai 200233, China http://www.nepsi.org.cn Email: Info@nepsi.org.cn Tel: +86 21 64368180 Fax: +86 21 64844580 ### 防爆合格证 证号: GYJ13.1037X 曲 MTS Systems Corporation 制造的产品: (地址: 3001 Sheldon Drive, Cary, NC 27513, USA) 名 称 多功能磁致伸缩液位计 型号规格 MGA DO系列 防爆标志 Exd II B T4 Gb 产品标准 / 图样编号 401673,401678 经图样及技术文件的审查和样品检验,确认上述产品符合 GB 3836.1-2010、GB 3836.2-2010 标准, 特颁发此证。 本证书有效期: 2013年2月27日至2018年2月26日 备注 1.安全使用注意事项见本证书附件。 2. 证书编号后缀 "X" 表明产品具有安全使用特殊条件,内容见本证书附件。 3. 型号规格说明见本证书附件。 站 长 国家级仪器仪表防爆安全监督检验站 颁发日期 40-三年 月二十七日 本证书仅对与认可文件和祥品一致的产品有效。 地址: 上海市漕宝路103号 邮编: 200233 网址: www.nepsi.org.cn Email: info@nepsi.org.cn 电话: +86 21 64368180 传真: +86 21 64844580 #### Agency Information, NEPSI XP Approval #### 国家级仪器仪表防爆安全监督检验站 National Supervision and Inspection Centre for Explosion Protection and Safety of Instrumentation (GYJ13.1037X) (Attachment I) #### Attachment I to GYJ13.1037X MGA series Multifunctional Magnetostrictive Level Plus Liquid Level Transmitter, manufactured by MTS Systems Corporation, has been certified by National Supervision and Inspection Center for Explosion Protection and Safety of Instrumentation (NEPSI). The Multifunctional Magnetostrictive Level Plus Liquid Level Transmitter accords with following standards: GB3836.1-2010 Explosive atmospheres-Part 1: Equipment - General requirements GB3836.2-2010 Explosive atmospheres-Part 2: Equipment protection by flameproof enclosures "d" Multifunctional Magnetostrictive Level Plus Liquid Level Transmitter has the Ex marking Ex d II B T4 Gb. The certificate number is GYJ13.1037X. The certifed type codes are: #### MGAB DO: a indicates output, which could be M or D. indicates housing configuration, which could be B or C. clindicates other informations such as electronic mounting, sensor pipe, material of construction and so on. # THE REAL PROPERTY. #### 1. Special conditions for safe use The suffix "X" placed after the certificate number indicates that this product is subject to special conditions for safe - The values of the flamepaths are different from the standard values given in GB3836.2-2010. Repair of the equipment is only allowed when done by the manufacturer or authorized representative. - When used in hazardous location, electrostatic discharge should be avoided. #### 2. Conditions for safe use - 2.1 The external earth connection facility shall be connected reliably. - 2.2 The ambient temperature of the Multifunctional Magnetostrictive Level Plus Liquid Level
Transmitter is -20°C to +60°C. - 2.3 Obey the warning "DO NOT OPEN WHEN ENERGIZED". Page 1 of 2 #### (GYJ13.1037X) #### (Attachment I) 2.4 3/4-14NPT Cable entry or blanking element, certified by notified body with type of protection Ex d II C Gb or Ex d II B Gb in accordance with GB3836.1-2010 and GB3836.2-2010, should be applied when installation in hazardous location. The IP code should be IP66/IP67, redundancy cable entry should be closed by blanking element. 2.5 Forbid end user to change the configuration to ensure the equipment's explosion protection performance. 2.6 When installation, use and maintenance of Multifunctional Magnetostrictive Level Plus Liquid Level Transmitter, observe following standards GB3836.13-1997 "Electrical apparatus for explosive gas atmospheres Part 13:Repair and overhaul for apparatus used in explosive gas atmospheres" GB3836.15-2000 "Electrical apparatus for explosive gas atmospheres Part 15:Electrical installations in hazardous area (other than mines)" GB3836.16-2006 "Electrical apparatus for explosive gas atmospheres Part 16:Inspection and maintenance of electrical installation (other than mines)" GB50257-1996 "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering" #### 3. Manufacturer's Resposibility - 3.1 Special condition for safe use specified above should be included in the instruction manual. - 3.2 Manufacturing should be done according to the documentation approved by NEPSI. - 3.3 Following items should be added to the nameplate - a) NEPSI logo - b) Ex marking - c) Certificate number - d) Ambient temperature range National Supervision and Inspection Center for Explosion Protection and Safety of Instrumentation 2013.02.27 Page 2 of 2 #### 国家级仪器仪表防爆安全监督检验站 National Supervision and Inspection Centre for Explosion Protection and Safety of Instrumentation (GYJ13.1037X) (Attachment I) #### GYJ13.1037X防爆合格证附件 I 由MTS Systems Corporation生产的MGA 2 2 2 系列多功能磁致伸缩液位计(以下简称液位计),经国家级仪器仪表防爆安全监督检验站(NEPSI)检验,符合以下国家标准的规定: GB3836.1-2010 爆炸性环境 第1部分: 设备 通用要求 GB3836.2-2010 爆炸性环境 第2部分:由隔爆外壳 "d" 保护的设备 产品防爆标志为Ex d II B T4 Gb, 防爆合格证号为GYJ13.1037X。 本次认可的产品具体型号规格为: MGAabc: 其中 C代表输出信号,可为M或D: 6代表外壳结构,可为B或C: 6代表安装方式、过程连接、传感器型式等其他信息。 # THE REAL PROPERTY. #### 一、产品安全使用特定条件 证书编号后缀"X"表明产品具有安全使用特殊条件: - 产品隔燥接合面参数与GB3836.2-2010标准中所规定的最小值或最大值不同。仅 允许制造商或授权机构对产品进行维修。 - 产品在危险现场使用时严禁干擦以防静电积累危险。 #### 二、产品使用注意事项 - 1. 液位计外壳设有接地端子,用户在安装使用时应可靠接地。 - 2. 液位计的使用环境温度范围为-20℃~+60℃。 - 3. 现场使用和维护液位计时,必须遵守"严禁带电开盖"的原则。 - 4. 液位计的电缆引入口须配用经国家授权的检验机构认可、符合GB3836.1-2010、 GB3836.2-2010、防爆等级为Ex d II C Gb或Ex d II B Gb且螺纹规格为3/4-14 NPT的电 缆引入装置或封堵件,啮合扣数至少为5扣。冗余电缆引入口须采用封堵件有效封堵。 第1页 共2页 Agency Information, NEPSI XP Approval (GYJ13.1037X) (Attachment I) - 用户不得自行随意更换该产品的电气零部件,应会同产品制造商共同解决运行中出现的故障,以免影响防爆性能和损坏现象的发生。 - 6. 产品的安装、使用和维护应同时遵守产品使用说明书、GB3836.13-1997"爆炸性气体环境用电气设备第13部分:爆炸性气体环境用电气设备的检修"、GB3836.15-2000 "爆炸性气体环境用电气设备第15部分:危险场所电气安装(煤矿除外)"、 GB3836.16-2006 "爆炸性气体环境用电气设备 第16部分:电气装置的检查和维护(煤矿除外)"及GB50257-1996 "电气设备安装工程爆炸和火灾危险环境电气装置施工及验收规范"的有关规定。 #### 三、 制造厂责任 - 1. 产品制造厂必须将上述使用注意事项纳入该产品的使用说明书中。 - 2. 制造厂必须严格按照NEPSI认可的文件资料生产。 - 3. 产品铭牌中应至少包括下列内容: - a) NEPSI认可标志 - b) 产品防爆标志 - c) 防爆合格证号 - d) 使用环境温度 国家级仪器仪表防爆安全监督检验站 二〇一三年二月八十二日 第2页 共2页 ### IECEx Certificate of Conformity #### INTERNATIONAL ELECTROTECHNICAL COMMISSION IEC Certification Scheme for Explosive Atmospheres for rules and details of the IECEx Scheme visit www.iecex.com Certificate No.: IECEx FMG 13.0019X Issue No: 0 Certificate history: Issue No. 0 (2013-11-15) Status: Current Page 1 of 3 Date of Issue: 2013-11-15 Applicant: MTS Systems Corp 3001 Sheldon Drive Cary, NC 27513 United States of America Electrical Apparatus: Model MG and MR Liquid Level Transmitters Optional accessory: Type of Protection: Flameproof, "d" Marking: Ex d IIB T4 Ga/Gb Ta = -20°C to +40°C; IP66 Approved for issue on behalf of the IECEx Certification Body: J.E.Marquedant --- Position: Group Manager - Electrical Signature: (for printed version) Date: - 1. This certificate and schedule may only be reproduced in full. - This certificate is not transferable and remains the property of the issuing body. - 3. The Status and authenticity of this certificate may be verified by visiting the Official IECEx Website. Certificate issued by: FM Approvals LLC 1151 Boston-Providence Tumpike Norwood, MA 02062 United States of America Mention of the EMIChine Group ## IECEx Certificate of Conformity Certificate No: IECEx FMG 13.0019X Issue No: 0 Date of Issue: 2013-11-15 Page 2 of 3 Manufacturer: MTS Systems Corp 3001 Sheldon Drive Cary, NC 27513 United States of America Additional Manufacturing location(s): This certificate is issued as verification that a sample(s), representative of production, was assessed and tested and found to comply with the IEC Standard list below and that the manufacturer's quality system, relating to the Ex products covered by this certificate, was assessed and found to comply with the IECEx Quality system requirements. This certificate is granted subject to the conditions as set out in IECEx Scheme Rules, IECEx 02 and Operational Documents as amended. #### STANDARDS: The electrical apparatus and any acceptable variations to it specified in the schedule of this certificate and the identified documents, was found to comply with the following standards: IEC 60079-0: 2011 Explosive atmospheres - Part 0: General requirements Edition:6.0 IEC 60079-1: 2007-04 Explosive atmospheres - Part 1: Equipment protection by flameproof enclosures "d" Edition:6 IEC 60079-26: 2006 Explosive atmospheres - Part 26: Equipment with equipment protection level (EPL) Ga Edition:2 This Certificate does not indicate compliance with electrical safety and performance requirements other than those expressly included in the Standards listed above. #### TEST & ASSESSMENT REPORTS: A sample(s) of the equipment listed has successfully met the examination and test requirements as recorded in Test Report: US/FMG/ExTR13.0018/00 Quality Assessment Report: DE/PTB/QAR13,0006/00 #### **Model MG Operation and Installation Manual** #### Agency Information, FM IECEx Certification ### IECEx Certificate of Conformity Certificate No: IECEx FMG 13.0019X Issue No: 0 Date of Issue: 2013-11-15 Page 3 of 3 Schedule #### EQUIPMENT: Equipment and systems covered by this certificate are as follows: #### MGabcdefghijkl. Liquid Level Transmitter. a = Agency approval E or H. b = Output M, D, F, S, T or X. c = Housing type B, C, V or W. d = Electronics mounting 1, 3, 4, 5 or 6. e = Sensor pipe B, C, D, E, F, M, N, P or R. f = Material of construction 1, 2, 3, 9 or A. g = Process connection type 1, 4, 5, 6, 7, 8, 9 or X. h = Process connection size A, B, C, D, E, F, G, H, J or X. i = Digital thermometer 0, 1, 2, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, J, K or L. j = Unit of measure M or U. k = Length (five digits maximum representing sensor length in millimeters or inches). I = Special E or S. *MRabcdefghijkl*. *Liquid Level Transmitter*.a = Agency approval E or H.b = Output 1, 2, 3, 4 or X.c = Housing type B, C, D, E, V, W, Y or Z.d = Electronics mounting 1, 3, 4, 5 or 6.e = Sensor pipe B, C, D, E, F, H, J, K or R.f = Material of construction 1, 2, 3, 9 or A.g = Process connection type 1, 4, 5, 6, 7, 8, 9 or X.h = Process connection size A, B, C, D, E, F, G, H, J or X.i = RTD 0, 1 or 2.j = Unit of measure M or U.k = Length (five digits maximum representing sensor length in millimeters or inches).I = Special E or S. #### CONDITIONS OF CERTIFICATION: YES as shown below: Consult the manufacturer if dimensional information on the flameproof joints is necessary. #### EG-Konformitätserklärung EC Declaration of Conformity Déclaration CE de Conformité MTS Sensor Technologie GmbH & Co. KG, Auf dem Schüffel 9, 58513 Lüdenscheid, GERMANY erklärt als Hersteller oder dessen Bevollmächtigter in alleiniger Verantwortung, dass die Produkte declares as manufacturer or as his authorized representative in sole responsibility that the products déclare en qualité de fabricant ou de son mandataire sous sa seule responsabilité que les produits Liquid Level Sensors MGA x a xxxxxxxxxxx with a = F, G, H, P, R, S, 4, 5 den Vorschriften folgender Europäischen Richtlinien entsprechen: comply with the regulations of the following European Directives: sont conformes aux prescriptions des directives européennes suivantes : 94/9/EC Geräte und Schutzsysteme zur Verwendung in explosionsgefährdeten Bereichen Equipment and protective systems for use in potentially explosive atmospheres Appareils et systèmes de protection à être utilisés en atmosphères explosibles 2004/108/EC Elektromagnetische Verträglichkeit Electromagnetic Compatibility Compatibilité électromagnétique Angewandte harmonisierte Normen: Applied harmonized standards: Normes harmonisées appliquées : EN 50014:1997 + A1 + A2, EN 50020:2002, EN 50284:1999 EN 61326-1:2006 EG-Baumusterprüfbescheinigung: EC type examination certificate: Certificat de l'examen CE de type : PTB 04 ATEX 2028 X ausgestellt durch / issued by / exposé par: Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, GERMANY Benannte Stelle für Qualitätsüberwachung: Notified body for quality assurance control: Organisme notifié pour l'assurance qualité : Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, GERMANY Kennnummer / Ident number / Numéro d'identification : 0102 Kennzeichnung / Marking / Marquage : Il 1/2G EEx ia IIB T4 resp. (Il 2G EEx ia IIB T4 resp. (II 1/2G EEx ia IIA T4 resp. 🖾 II 2G EEx ia IIA T4 Lüdenscheid, 2013-03-15 MTS Sensor Technologie GmbH & Co. KG Thomas Muckenhaupt Head of Quality Management Dr. Dieter Köngeter ATEX representative person #### Agency Information, MG EC Declaration of Conformity EC13.018A #### **EC Declaration of Conformity** EG-Konformitätserklärung Déclaration CE de Conformité MTS Systems Corporation • 3001 Sheldon Drive • Cary, NC 27513 • USA declares as manufacturer in sole responsibility that the liquid level sensor type erklärt als
Hersteller in alleiniger Verantwortung, dass der Füllstandsensor Typ déclaré en qualité de fabricant sous sa seule responsabilité que le capteur de niveau type > **Level Plus** MGabcd... a = E, H; b = D, F, M, S, T, X; c = B, C, V, W;d = 1, 3, 4, 5, 6; comply with the regulations of the following European Directives: den Vorschriften folgender Europäischen Richtlinien entsprechen: sont conformes aux prescriptions des directives européennes suivantes : > 94/9/EC Equipment and protective systems for use in potentially explosive atmospheres Geräte und Schutzsysteme zur Verwendung in explosionsgefährdeten Bereichen Appareils et systèmes de protection à être utilisés en atmosphères explosibles 2004/108/EC Electromagnetic Compatibility Elektromagnetische Verträglichkeit Compatibilité électromagnétique Applied harmonized standards: Angewandte harmonisierte Normen: Normes harmonisées appliquées : > EN 60079-0:2012, EN 60079-1:2007, EN 60079-26:2007, EN 60529:1991 + A1:2000 EN 61326-1:2006. EN 61326-2-3:2006 EC Type Examination Certificate: EG-Baumusterprüfbescheinigung: Certificat de l'examen CE de type: ausgestellt durch / issued by / exposé par: Notified body for quality assurance control: Benannte Stelle für Qualitätsüberwachung: Organisme notifié pour l'assurance qualité: Kennzeichnung / Marking / Marguage: FM 13 ATEX 0050 X FM Approvals Ltd., Windsor, Berkshire, UK (1725) Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany (0102) (II 1/2G Ex d IIB T4 Ga/Gb -20 °C ≤ T_{amb} ≤ +40 °C; IP66 Lüdenscheid, 2013-12-17 MTS Sensor Technologie GmbH & Co. KG Dipl.-Ing. Thomas Muckenhaupt Quality Management ATEX Representative # GOVERNMENT OF INDIA MINISTRY OF COMMERCE & INDUSTRY PETROLEUM AND EXPLOSIVES SAFETY ORGANISATION (PESO) (Formerly Department of Explosives) CGO COMPLEX SEMINARY HILLS NAGPUR 440006 Letter No: A/P/HQ/MH/104/3467(P336577) Email :explosives@explosives.gov.in Phone/Fax No.2510248/2510577 Dated: 29/5/2014 To M/s. MTS Systems Corporation, 3001 Shelium D.1— Cary, NC 27513, USA. Sub: Approval of Model MG and MR Liquid Level Transmitter -under Petroleum Rules, 2002. Dear Sir(s). Please refer to letter No NIL dated 08/05/2014 from M/s. SERVOCONTROLS & Hydraulics (I)Pvt Ltd. BELGAUM on the above subject. The following Flame Proof equipment(s) manufactured by you according to EN 60079-0: 2012, EN 60079-1: 2007 & EN 60079-26: 2007 standards and covered under FM Approvals Ltd., UK Test reports mentioned below is approved for use in Zone 1 of Gas Oroup IIB hezardous areas coming under the purview of the Petroleum Rules, 2002 administered by this Organization. | Sr.No | Description | Safety
Protection | CCEs
Identification
Number | Test
House | Test Report No. | Drawing
Numbers | |-------|---|-------------------------|----------------------------------|-----------------------------|--------------------------------|--------------------------| | 41 | Model MG and MR Liquid
Level Transmitter | Ex d IIB T4
Ga/Gb Ta | P336577/1 | FM
Approvals
Ltd., UK | FM13ATEX0050X
Dt.12/11/2013 | As per
Test
Report | This Approval is granted subject to observance of the following conditions:- - The design and construction of the equipment shall be strictly in accordance with description, condition and drawings as mentioned in the FM Approvals Ltd., UK Test Reports referred to above - 2). The equipment shall be used only with approved type of accessories and associated apparatus - Each equipment shall be marked either by raised lettering cast integrally or by plate attached to the main air and to indicate conspicuously (a) Name of the manufacturer - (b) Name and number by which the equipment is identified - (c) Number & Date of the test Report of the FM Approvals Ltd., UK applicable to the equipment - (d) CCEs Identification Number of this letter by which use of the apparatus is approved - A certificate to the effect that the equipment has been manufactured strictly in accordance with the drawing referred to in the FM Approvals Ltd., UK test report and is identical with the one tested and certificate FM Approvals Ltd., UK shall be furnished with each equipment - 5). The customer shall be supplied the copy of this letter, an extract of the conditions and maintenance schedule, if any recommended by FM Approvals Ltd., UK in their test reports and copy of instructions booklet detailing operation and maintenance of the equipment so as to maintain its Flame Proof safety characterestics 1.0 30 HWA ZOI# 13:04 HP LHSERJET FRX #### **Model MG Operation and Installation Manual** #### Agency Information, CCoE Certification colice and maintenance of subject equipment shall be looked after by your representative M/s. SERVOCONTROLS & Hydraulies (I)Pvt Ltd., Survey No. 683, Industrial Estate, Udvembag, BELGAUM, BELGAUM (Dist.), Karnataka (State) This Approval also covers the permissible variation as approved under the FM Approvals Ltd. UK test report referred above. This approval may be deemed to have been revoked with immediate effect at any time, if any of the conditions subject to which approval has been granted is violated or no with. The approval may also be amended or withdrawn at any time, if considered necessary the interest of safety. The field performance report from actual users /your customers of the subject equipment may please be collected and furnished to this office for verification and record at regular intervals. This approval is otherwise valid a period of five years from the date of issue. Yours faithfully, (V. B. MINJ) Controller of Explosives for Chief Controller of Explosives Nagpur Copy to : at Jr. Unief Controller of Explosives, South Circle, Chennal. M/s. SERVOCONTROLS & Hydraulies (I)Pvt Ltd., Survey No. 683, Industrial Estate, Udyamba BELGAUM, Dist. BELGAUM(Karnataka). entroller of Explosive HP LASERJET FAX 30 MSS 2014 13:04 Certificate Number: 14-HS1208644-PDA 25/SFP/2014 #### Confirmation of Product Type Approval Please refer to the "Service Restrictions" shown below to determine if Unit Certification is required for this product. This certificate reflects the information on the product in the ABS Records as of the date and time the certificate is Pursuant to the Rules of the American Bureau of Shipping (ABS), the manufacturer of the below listed product held a valid Manufacturing Assessment (MA) with expiration date of 09/SEP/2019. The continued validity of the Manufacturing Assessment is dependent on completion of satisfactory audits as required by the ABS Rules. And; a Product Design Assessment (PDA) valid until 03/AUG/2019 subject to continued compliance with the Rules or standards used in the evaluation of the product. The above entitle the product to be called Product Type Approved. The Product Design Assessment is valid for products intended for use on ABS classed vessels. MODUs or facilities which are in existence or under contract for construction on the date of the ABS Rules used to evaluate the ABS makes no representations regarding Type Approval of the Product for use on vessels, MODUs or facilities built after the date of the ABS Rules used for this evaluation. Due to wide variety of specifications used in the products ABS has evaluated for Type Approval, it is part of our contract that; whether the standard is an ABS Rule or a non-ABS Rule, the Client has full responsibility for continued compliance with the standard. > Product Name: Level Transmitter Model Name(s): MG Series #### Presented to: MTS SYSTEMS CORP., SENSORS DIVISION 3001 SHELDON DR. CARY United States Intended Service: Tank Monitoring for Marine and Offshore Applications. **Description:** MG Liquid Level Transmitters. Tier: Ratings: Please see Manufacturer's Data Sheet Document Part Number 550784 Rev. K, dated 07/14 (US) for additional ratings and international Standard Information. Service Restrictions: Unit Certification is not required for this product. If the manufacturer or purchaser request an ABS Certificate for compliance with a specification or standard, the specification or standard, including inspection standards and tolerances, must be clearly defined. Equipment is not to be used in hazardous locations unless certified and approved for the particular atmosphere and application. The Manufacturer has provided a declaration about the control of, or the lack of Comments: Asbestos in this product. Each particular installation is to be approved in conjunction with the relevant level indication system. If installed on U.S. flagged vessels, ATEX Directive certified equipment should be either replaced or proven to have been tested to the IEC 60079 series standards by an independent laboratory accepted by the U.S. Coast Guard. Notes / Documentation: Supporting Documentation: EC-Type Examination Certificate No. FM13ATEX0050X, dated 12 Nov. 2013; CSA International Test Report No.1221977, DQD 507.10 Rev. 2005-08-31; MTS Digital Series Long Gauge Test, 09/25/2014 1:59:55 PM Copyright 2001 American Bureau of Shipping. All rights reserved. #### Agency Information, ABS Type Approval Certificate Number: 14-HS1208644-PDA 25/SEP/2014 #### Confirmation of Product Type Approval Please refer to the "Service Restrictions" shown below to determine if Unit Certification is required for this product. This certificate reflects the information on the product in the ABS Records as of the date and time the certificate is printed. Pursuant to the Rules of the American Bureau of Shipping (ABS), the manufacturer of the below listed product held a valid Manufacturing Assessment (MA) with expiration date of 09/SEP/2019. The continued validity of the Manufacturing Assessment is dependent on completion of satisfactory audits as required by the ABS Rules. And; a Product Design Assessment (PDA) valid until 03/AUG/2019 subject to continued compliance with the Rules or standards used in the evaluation of the product. The above entitle the product to be called Product Type
Approved. The Product Design Assessment is valid for products intended for use on ABS classed vessels, MODUs or facilities which are in existence or under contract for construction on the date of the ABS Rules used to evaluate the Product. ABS makes no representations regarding Type Approval of the Product for use on vessels, MODUs or facilities built after the date of the ABS Rules used for this evaluation. Due to wide variety of specifications used in the products ABS has evaluated for Type Approval, it is part of our contract that; whether the standard is an ABS Rule or a non-ABS Rule, the Client has full responsibility for continued compliance with the standard. Product Name: Level Transmitter Model Name(s): MG Series #### Presented to: MTS SYSTEMS CORP., SENSORS DIVISION 3001 SHELDON DR. CARY United States Intended Service: Tank Monitoring for Marine and Offshore Applications. **Description:** MG Liquid Level Transmitters. Tier: 3 Ratings: Please see Manufacturer's Data Sheet Document Part Number 550784 Rev. K, dated 07/14 (US) for additional ratings and international Standard Information. Service Restrictions: Unit Certification is not required for this product. If the manufacturer or purchaser request an ABS Certificate for compliance with a specification or standard, the specification or standard, including inspection standards and tolerances, must be clearly defined. Equipment is not to be used in hazardous locations unless certified and approved for the particular atmosphere and application. Comments: The Manufacturer has provided a declaration about the control of, or the lack of Asbestos in this product. Each particular installation is to be approved in conjunction with the relevant level indication system. If installed on U.S. flagged vessels, ATEX Directive certified equipment should be either replaced or proven to have been tested to the IEC 60079 series standards by an independent laboratory accepted by the U.S. Coast Guard. **Notes / Documentation:** Supporting Documentation: EC-Type Examination Certificate No. FM13ATEX0050X, dated 12 Nov. 2013; CSA International Test Report No.1221977,DQD 507.10 Rev. 2005-08-31; MTS Digital Series Long Gauge Test, 09/25/2014 1:59:55 PM Copyright 2001 American Bureau of Shipping. All rights reserved. #### **Document Part number:** 550791 Revision N (EN) 02/2016 # **OCATIONS** #### USA MTS Systems Corporation Sensors Division 3001 Sheldon Drive Cary, N.C. 27513, USA Tel. +1 919 677-0100 Fax +1 919 677-0200 info.us@mtssensors.com www.mtssensors.com #### GERMANY MTS Sensor Technologie GmbH & Co. KG Auf dem Schüffel 9 58513 Lüdenscheid, Germany Tel. +49 2351 9587-0 Fax +49 2351 56491 info.de@mtssensors.com www.mtssensor.de #### JAPAN MTS Sensors Technology Corp. 737 Aihara-machi, Machida-shi, Tokyo 194-0211, Japan Tel. +81 42 775-3838 Fax +81 42 775-5512 info.jp@mtssensors.com www.mtssensor.co.jp #### FRANCE MTS Systems SAS Zone EUROPARC Bâtiment EXA 16 16/18, rue Eugène Dupuis 94046 Creteil, France Tel. +33 1 58 4390-28 Fax +33 1 58 4390-03 info.fr@mtssensors.com www.mtssensor.com #### ITALY MTS Systems Srl.Sensor Division Via Diaz,4 25050 Provaglio d'Iseo (BS), Italy Tel. + 39 030 988 3819 Fax + 39 030 982 3359 info.it@mtssensors.com www.mtssensor.com #### CHINA MTS Sensors Room 504, Huajing Commercial Center, No. 188, North Qinzhou Road 200233 Shanghai, China Tel. +86 21 6485 5800 Fax +86 21 6495 6329 info.cn@mtssensors.com www.mtssensors.cn # GAL NOTICES MTS, Temposonics and Level Plus are registered trademarks of MTS Systems Corporation. All other trademarks are the property of their respective owners. Printed in USA. Copyright ⊚ 2016 MTS Systems Corporation. All Rights Reserved in all media. All specifications are subject to change. Contact MTS for specifications and engineering drawings that are critical to your application. Drawings contained in this document are for reference only. Go to http://www.mtssensors.com for the latest product information.