EH SSI
Magnetostrictive Linear Position Sensors

- High pressure resistant sensor rod
- Operating temperature up to +75 °C (+167 °F)
- Small & compact – Ideal for standard hydraulic cylinders
MEASURING TECHNOLOGY

The absolute, linear position sensors provided by Temposonics rely on the company’s proprietary magnetostrictive technology, which can determine position with a high level of precision and robustness. Each Temposonics position sensor consists of a ferromagnetic waveguide, a position magnet, a strain pulse converter and supporting electronics. The magnet, connected to the object in motion in the application, generates a magnetic field at its location on the waveguide. A short current pulse is applied to the waveguide. This creates a momentary radial magnetic field and torsional strain on the waveguide. The momentary interaction of the magnetic fields releases a torsional strain pulse that propagates the length of the waveguide. When the ultrasonic wave reaches the beginning of the waveguide it is converted into an electrical signal. Since the speed of the ultrasonic wave in the waveguide is precisely known, the time required to receive the return signal can be converted into a linear position measurement with both high accuracy and repeatability.

<table>
<thead>
<tr>
<th>Measurement cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Fig. 1: Time-of-flight based magnetostrictive position sensing principle

EH SENSOR

Robust, non-contact and wear free, the Temposonics® linear position sensor provide the best durability and precise position measurement feedback in harsh industrial environments. Measurement accuracy is tightly controlled by the quality of the waveguide manufactured exclusively by in-house production.

Temposonics® EH is a compact rod-style sensor and the ideal solution for direct stroke measurement in small hydraulic cylinders. The position magnet mounted on the piston head of the hydraulic cylinder travels over the sensor rod with the built-in waveguide to provide a precise, non-contact position measurement. The EH is ideal for a variety of applications including: Fluid power, food industry, plastic industry, glass and ceramics, energy sector, machine tools and testing machines.

Fig. 2: Typical application: Plastics processing
TECHNICAL DATA

Output

<table>
<thead>
<tr>
<th>Interface</th>
<th>SSI (Synchronous Serial Interface)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data format</td>
<td>Binary or gray</td>
</tr>
<tr>
<td>Data length</td>
<td>24 bit, 25 bit</td>
</tr>
</tbody>
</table>

Data transmission rate

- 70 kBaud* → 1 MBaud, dependent on cable length:
 - Cable length: < 3 m, < 50 m, < 100 m, < 200 m, < 400 m
 - Baud rate: 1.0 MBd, < 400 kbd, < 300 kbd, < 200 kbd, < 100 kbd

Measurement parameters

<table>
<thead>
<tr>
<th>Resolution</th>
<th>20 µm, 50 µm or 100 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle time</td>
<td>Stroke length</td>
</tr>
<tr>
<td></td>
<td>300 mm</td>
</tr>
<tr>
<td></td>
<td>Measurement rate</td>
</tr>
<tr>
<td></td>
<td>3.7 kHz</td>
</tr>
</tbody>
</table>

Linearity

\[\leq \pm 0.02 \% \text{ F.S.} \text{ (minimum } \pm 60 \mu m) \]

Repeatability

\[\leq \pm 0.005 \% \text{ F.S.} \text{ (minimum } \pm 20 \mu m) \]

Operating conditions

- **Operating temperature**:
 - -40…+75 °C (-40…+167 °F)
- Humidity: 90 % relative humidity, no condensation
- **Ingress protection**: IP67/IP69K (correctly fitted)
- **Shock test**: 100 g (single shock) IEC standard 60068-2-27
- **Vibration test**: 15 g/10…2000 Hz IEC standard 60068-2-6 (resonance frequencies excluded)
- **EMC test**:
 - Electromagnetic emission according to EN 61000-6-3
 - Electromagnetic immunity according to EN 61000-6-2
 - The sensor meets the requirements of the EU directives and is marked with \(\varepsilon \)

Design/Material

- **Sensor electronics housing**: Stainless steel 1.4305 (AISI 303); option: Stainless steel 1.4404 (AISI 316L)
- **Flange**: Stainless steel 1.4305 (AISI 303); option: Stainless steel 1.4404 (AISI 316L)
- **Sensor rod**: 7 mm (0.28 in.) rod Ø: Stainless steel 1.4301 (AISI 304)
 - 10 mm (0.39 in.) rod Ø: Stainless steel 1.4306 (AISI 304L); option: Stainless steel 1.4404 (AISI 316L)
- **Stroke length**: 50…2540 mm (2…100 in.)
- **Operating pressure**: 7 mm (0.28 in.) rod Ø: 300 bar (4351 psi), 450 bar (6527 psi) peak
 - 10 mm (0.39 in.) rod Ø: 350 bar (5076 psi), 530 bar (7687 psi) peak

Mechanical mounting

- **Mounting position**: Any
- **Mounting instruction**: Please consult the technical drawings and the brief instructions (document number: 551684)

Electrical connection

- **Connection type**: M12 male connector (8 pin)
- **Operating voltage**: +24 VDC (−15/+20 %); UL recognition requires an approved power supply with energy limitation (UL 61010-1), or Class 2 rating according to the National Electrical Code (USA)/Canadian Electrical Code
- **Ripple**: \(\leq 0.28 \text{ V}_{\text{pp}} \)
- **Current consumption**: Typical 90 mA
- **Dielectric strength**: 500 VDC (DC ground to machine ground)
- **Polarity protection**: Up to −30 VDC
- **Overvoltage protection**: Up to 36 VDC

1/ With position magnet # 251 416-2
2/ The IP rating is not part of the UL recognition

* With standard one shot of 16 µs
TECHNICAL DRAWING

CONNECTOR WIRING

<table>
<thead>
<tr>
<th>D84</th>
<th>Signal + power supply</th>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>M12 male connector (A-coded)</td>
<td></td>
<td>1</td>
<td>Clock (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Clock (−)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Data (+)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Data (−)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Not connected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>+24 VDC (−15/+20 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>DC Ground (0 V)</td>
</tr>
</tbody>
</table>

Controlling design dimensions are in millimeters and measurements in () are in inches

Fig. 3: Temposonics® EH with ring magnet

Fig. 4: Connector wiring D84
FREQUENTLY ORDERED ACCESSORIES

Position magnets

<table>
<thead>
<tr>
<th>U-magnet OD33</th>
<th>Ring magnet OD33</th>
<th>Ring magnet OD25.4</th>
<th>Ring magnet OD17.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 251 416-2</td>
<td>Part no. 201 542-2</td>
<td>Part no. 400 533</td>
<td>Part no. 401 032</td>
</tr>
<tr>
<td>Weight: Approx. 11 g</td>
<td>Weight: Approx. 14 g</td>
<td>Weight: Approx. 10 g</td>
<td>Weight: Approx. 5 g</td>
</tr>
<tr>
<td>Surface pressure: Max. 40 N/mm²</td>
<td>Surface pressure: Max. 40 N/mm²</td>
<td>Surface pressure: Max. 40 N/mm²</td>
<td>Surface pressure: Max. 20 N/mm²</td>
</tr>
<tr>
<td>Fastening torque for M4 screws: 1 Nm</td>
<td>Fastening torque for M4 screws: 1 Nm</td>
<td>Operating temperature: −40…+105 °C (~−40…+221 °F)</td>
<td>Operating temperature: −40…+105 °C (~−40…+221 °F)</td>
</tr>
</tbody>
</table>

Cable connectors

<table>
<thead>
<tr>
<th>Cable with M12 A-coded female connector (8 pin), straight – pigtail</th>
<th>Cable with M12 A-coded female connector (8 pin), angled – pigtail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 370 674</td>
<td>Part no. 370 821</td>
</tr>
</tbody>
</table>

Cord sets

<table>
<thead>
<tr>
<th>M12 A-coded female connector (8 pin), angled</th>
<th>M12 A-coded female connector (8 pin), straight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 370 694</td>
<td>Part no. 370 699</td>
</tr>
<tr>
<td>Housing: GD-ZnAL</td>
<td>Housing: GD-ZnAL</td>
</tr>
<tr>
<td>Termination: Screw</td>
<td>Termination: Screw</td>
</tr>
<tr>
<td>Contact insert: CuZn</td>
<td>Contact insert: CuZn</td>
</tr>
<tr>
<td>Cable Ø: 4…8 mm (0.16…0.31 in.) Wire: 0.75 mm²</td>
<td>Cable Ø: 6…8 mm (0.24…0.31 in.) Wire: 0.5 mm²</td>
</tr>
<tr>
<td>Operating temperature: −25…+90 °C (~−13…+194 °F) Ingress protection: IP67 (correctly fitted) Fastening torque: 0.6 Nm</td>
<td>Operating temperature: −25…+85 °C (~−13…+185 °F) Ingress protection: IP67 (correctly fitted) Fastening torque: 0.6 Nm</td>
</tr>
</tbody>
</table>

*Follow the manufacturer’s mounting instructions

Controlling design dimensions are in millimeters and measurements in () are in inches
ORDER CODE

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

a. Sensor model
- E Rod

b. Design
- **EH** rod-style sensor with housing material 1.4305 (AISI 303) and rod material 1.4301 (AISI 304)
 - Threaded flange M18×1.5-6g, rod Ø 7 mm
 - Threaded flange ¾"-16 UNF-3A, rod Ø 7 mm
- **EH** rod-style sensor with housing material 1.4305 (AISI 303) and rod material 1.4306 (AISI 304L)
 - Threaded flange M18×1.5-6g, rod Ø 10 mm
 - Threaded flange ¾"-16 UNF-3A, rod Ø 10 mm
- **EH** rod-style sensor with housing material 1.4404 (AISI 316L) and rod material 1.4404 (AISI 316L)
 - Threaded flange ¾"-16 UNF-3A, rod Ø 10 mm
 - Threaded flange M18×1.5-6g, rod Ø 10 mm

c. Stroke length
- Standard stroke length (mm): 0050…2540 mm
- Ordering steps:
 - 50…500 mm: 5 mm
 - 500…750 mm: 10 mm
 - 750…1000 mm: 25 mm
 - 1000…2540 mm: 50 mm
- Standard stroke length (in.): 001.0…100.0 in.
- Ordering steps:
 - 1…20 in.: 0.2 in.
 - 20…30 in.: 0.4 in.
 - 30…40 in.: 1.0 in.
 - 40…100 in.: 2.0 in.

Non-standard stroke lengths are available; must be encoded in 5 mm/0.1 in. increments.

d. Connection type
- D84 M12 male connector (8 pin)

e. Operating voltage
- +24 VDC (−15/+20 %)

f. Output
- **S** (14) (15) (16) (17) (18) (19) = Synchronous Serial Interface
- **SSII**
- **Data length (box no. 14)**
 - 1: 25 bit
 - 2: 24 bit
- **Output format (box no. 15)**
 - **B** Binary
 - **G** Gray
- **Resolution (box no. 16)**
 - 3: 0.05 mm (50 µm)
 - 4: 0.1 mm (100 µm)
 - 5: 0.02 mm (20 µm)
- **Performance (box no. 17)**
 - 1: Standard
- **Mode (box no. 18 & 19)**
 - 0: 0 Measuring direction forward

DELIVERY

- **Sensor**
- **O-ring**

Accessories have to be ordered separately.

Manuals, Software & 3D Models available at: www.temposonics.com