目次

1. お問い合わせ先 ... 3
2. 用語の説明 ... 4
3. はじめに ... 6
4. 安全上の注意事項 .. 6
5. クイックスタートアップガイド .. 6
 5.1 作業を開始する前に .. 6
 5.2 クイックスタートアップ手順 ... 6
6. ディスプレイメニュー.. 6
 6.1 動作モード ... 6
 6.1.1 実行モード .. 6
 6.1.2 プログラムモード .. 6
 6.2 ディスプレイの構成 .. 7
 6.3 メニュー構造 ... 7
7. アラーム .. 8
8. エラーコード (障害) ... 8
9. Modbusインターフェース ... 8
 9.1 LP Dashboard ... 9
 9.1.1 LP Dashboardのインストール .. 9
 9.1.2 ホーム画面 .. 9
 9.1.3 Configuration [設定] .. 10
 9.1.4 Signal Settings [信号設定] .. 10
 9.1.5 Level Settings [レベル設定] ... 10
 9.1.6 Temperature Settings [温度設定] ... 11
 9.1.7 Volume Settings [体積設定] ... 11
 9.1.8 Flash Settings [フラッシュ設定] ... 12
 9.1.9 Save Settings [保存設定] .. 12
 9.2 ディスプレイの設定 .. 13
 9.3 Modbusファンクションコード ... 21
 9.4 Modbusレジスタマップ ... 22
 9.5 単位の使い方 ... 26
 9.6 Modbusレジスタマップに関する注意事項 ... 26
 9.7 体積計算に使用する公式 .. 28
1. お問い合わせ先

米国

全般
Tel: +1-919-677-0100
Fax: +1-919-677-2343
Eメール: info.us@temposonics.com
https://www.temposonics.com

郵送先および発送先
Tempsonics, LLC
3001 Sheldon Drive
Cary, North Carolina, 27513, USA

カスタマーサービス
Tel: +1-800-633-7609
Fax: +1-800-498-4442
Eメール: info.us@temposonics.com

テクニカルサポートおよびアプリケーション
24 Hour Emergency Technical Support
Tel: +1-800-633-7609
Eメール: levelplus@temposonics.com

ドイツ

全般
Tel.: +49-2351-9587-0
Fax: +49-2351-56491
Eメール: info.de@temposonics.com
https://www.temposonics.com

郵送先および発送先
Tempsonics GmbH & Co. KG
Auf dem Schüffel 9
D - 58513 Lüdenscheid, Germany

テクニカルサポートおよびアプリケーション
Tel.: +49-2351-9587-0
Eメール: info.de@temposonics.com
https://www.temposonics.com
1. 用語の説明

6A重油
「一般的な原油」、API比重に対して60°Fに体積を補正します。

6B軽油
「一般的な製品」、API比重に対して60°Fに体積を補正します。

6C化学品
個別かつ特別な用途に適した「体積補正係数（VCF）」、熱膨張係数に対して60°Fに容量を補正します。

6C Mod
VCFを定義するための調整可能な温度基準。

API比重
水と比較して石油がどの程度重いまたは軽いかを示す基準。許容値は（6A）で0〜100度API、（6B）で0〜85度APIです。

DDA
‘Direct Digital Access’ - Temposonicsが本質的安全区域で使用するために開発した専用デジタルプロトコル。

密度
特定の温度の物体の質量を体積で割った値。密度値はlb/ft³単位で入力する必要があります。

HART®
インテリジェントなフィールド機器とホストシステムとの間のデータアクセスを提供する双方向通信プロトコル。

インターフェース
名詞：別の液体の下に位置するある液体の水面の高さ。

インターフェース
形容詞：ユーザーによるソフトウェアプロトコル（HART, DDA, MODBUS）へのアクセスを可能にするソフトウェアグラフィカルユーザーアクセス（GUI）。

本質的安全
‘Intrinsically safe’（本質的安全）- 爆発の可能性がある空気に曝露された相互接続配線を有する装置内の電気エネルギーを火花や加熱の影響が発火の原因となり得ないレベルまで制限することを基礎とする保護タイプ。
質量
重力場に重量を生じさせる物体の特性で、基準温度での密度に体積補正係数を乗すこと（密度 × VCF）により算出されます。

MODBUS
Modicon社がプログラマブルロジックコントローラ（PLC）用として1979年に公開したシリアル通信プロトコル。事実上の業界標準通信プロトコルとなっており、産業用電子機器の接続手段として現在最も一般的に利用されています。

N
NEMA Type 4X
主に腐食、風に吹き飛ばされた塵や雨、水はね、ホースに向けられた水に対してある程度の保護を提供し、かつ筐体上の氷結による損傷を回避するための屋内外用途の製品筐体。内部結露や内部氷結などの状況に対する保護の提供は目的ではありません。

NPT
パイプと接続に使用するパイプ用テーパねじを規定した米国規格。

NSVP
‘Net Standard Volume of the Product’（正味標準液体容量）－タンク内の温度補正した液体容量。温度計測機能を備えたトランスミッターの発注が必要です。NSVPは、液体容積に温度に基づいた体積補正係数を乗すこと（GVVP × VCF）により算出されます。

R
基準温度
密度を計測する温度。許容値は0°C～66°C（32°F～150°F）です。

S
比重
同一条件下における水の密度に対する液体の密度比。

球体半径
液体を含む球体の内部半径。この値は球体オフセットと併せて体積計算に使用されます。

球体オフセット
不均一な球体形状による球体の付加的体積を占めるオフセット値。この値は球体半径と併せて体積計算に使用されます。

ストラップテーブル
容器の高さとその高さで入る容量を示した対応表。本トランスミッターは100ポイントまで対応します。

TEC
‘Thermal Expansion Coefficient’（熱膨張係数）－物体の温度変化と体積の変化との相関性を示す値。許容値は270.0～930.0です。TECの単位は10 E-6/°Fです。

温度補正法
（6A、6B、6C、6C Modおよびカスタムテーブルを含む）60°Fからの温度変化を理由に変化したタンク内の製品容積を補正するために使用する5つの製品補正方法の中の1つ。

体積計算モード
球体およびストラップテーブルなど、レベル計測値から体積計測値を計算するために使用する2つの方法のうちの1つ。

VCF
‘Volume Correction Factor’（体積補正係数）－温度点と液体の膨張／収縮に対する補正係数との関係を示した対応表。本トランスミッターは50ポイントまで対応します。

W
稼働容量
ユーザーが容器に対して望む最大液体容量。一般には、容器の80％をオーバーフィル前の最大容量とします。

NSVPは、液体容積に温度に基づいた体積補正係数を乗ること（GVVP × VCF）により算出されます。
3. はじめに

3.1 本書の目的と使用について

本製品の操作を開始する前に、本書をよくお読みになり、安全に関する注意事項に従ってください。

この技術文書およびそのさまざまな添付資料の内容は、IEC 60079-14および各地の規制に準拠した有資格サービススタッフまたはTemposonics専門のサービス担当者による取り付け、設置、および試運転に関する情報の提供を目的としています。

3.2 使用されている記号と警告

警告は人身の安全のため、および記載されている製品または接続される装置の損傷を回避するためのものです。本書では以下に定める図記号を先頭に配置することにより、人員の生命や健康に影響を与えるか、または物質的な損害を発生させる可能性のある危険を回避するための安全に関する情報および警告を強調しています。

4. 安全上の注意事項

4.1 使用目的

本書の目的はプロトコルインターフェースに関する詳細情報を提供することです。すべての安全に関する情報は各製品の取扱説明書に記載されています。液面トランスミッターに接続する前に、取扱説明書をよくお読みください。

5. クイックスタートアップガイド

5.1 作業を開始する前に

注意:

適切な動作を保証するには、「Send Data Control」とおよびLP Dashboardを備えたRS-485変換機を使用する必要があります。
例：RS-485/USB, 380114

5.2 クイックスタートアップ手順

1. +24 VDCを端子に接続します。
2. データ線を端子に接続します。
3. データ線にPC（または他のデバイス）を接続します。
 （PCを使用している場合は、RS-485/USB変換機を使用します。
 詳細は、上記の注意を参照してください。）
4. トランスミッターの電源を入れます。
5. LP Dashboardを起動します。COMポートとアドレスを選択します。Modbusの工場出荷時のデフォルトアドレスは'247'です。

6. ディスプレイメニュー

すべてのLPシリーズ液面トランスミッターには、ディスプレイの操作に使用するスタイラス（部品番号404108）が同梱されます。シングルおよびデュアルキャビティハウジングの場合、スタイラスはハウジングを取り外すことなくユニットを設定できるように設計されています。スタイラスを使用する際は、ボタン周りの輪郭と同じ向きにスタイラスをそろえるようにしてください。スタイラスを正しくそろえないと、ディスプレイが適切に機能しない原因となる可能性があります。

6.1 動作モード

LPシリーズ液面トランスミッターは次のいずれかの動作モードで稼働します。これらの動作モードを利用して、さまざまな動作パラメータを設定およびセットアップすることができます。

6.1.1 実行モード

実行モードは基本となる動作モードです。このモードでは計測、データ表示、Modbusコマンドへの応答が行われます。
6.1.2 プログラムモード

プログラムモードは、液面トランスミッターの試運転およびトラブルシューティングで主に使用されるモードです。全メニューおよび利用可能な機能については、6.3項「メニュー構造」を参照してください。プログラムモードは、不当な変更が起きないようにパスワードによって保護されています。工場出荷時のデフォルトパスワードは‘27513’です。プログラムモードのとき、遠隔通信が機能しません。自動タイムアウト機能が提供されているため、不注意によりトランスミッターでプログラムモードが継続されないようにしています。タイムアウトは1分に設定されており、その後しばらくするとさらにプロンプトが出されます。タイムアウトは合計2分です。

注意：ディスプレイでプログラムモードを終了する際は、すべての変更が受理されたことを確認するために必ずユニットがリセットされます。リセットしてから液面トランスミッターがコマンドに応答できるようになるまでにかかる時間は約5秒です。

6.2 ディスプレイの構成

上矢印キー – 画面上でカーソルを上に移動したり、数値を増加させたりします。
下矢印キー – 画面上でカーソルを下に移動したり、数値を減少させたりします。
スクロールキー – 画面上でカーソルを右に移動します。カーソルは一周して元に戻ります。
ENTERキー – プログラムモードに入ると、ハイライトした項目を選択すると、選択内容を確定するときに使用します。
EXITキー – ディスプレイの中の隠し項目で、いつでもメニューを開じたいときに使用します。
計測項目 – 表示するように選択されたプロセス変数です。選択した項目間で自動的にスクロール表示されます。
計測値 – 計測項目的数値をディスプレイに表示します。
単位 – 計測値の単位をディスプレイに表示します。

7. アラーム

Modbusの出力には複数のアラームが付与されており、これらはディスプレイに表示されます。アラームを確認するときは、スタイルで上矢印をタップします。Modbusの出力は、問題が発生して液面値の出力が信頼できない場合、注文長よりも大きな異常な高値になるよう設定されています。
8. エラーコード（障害）

<table>
<thead>
<tr>
<th>障害コード</th>
<th>説明</th>
<th>是正処置</th>
</tr>
</thead>
</table>
| 101 | マグネット不在 | • Float Configuration [フロート設定]を取り付けられているフロートの数に対して正しいことを確認します。
• フロートが無効部分にないことを確認します。
• Auto Threshold [自動閾値]が有効であることを確認します。
• センサーの電源を入力します。適切な動作に戻らない場合は、お問い合わせください。 |
| 102 | 内部障害1 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 103 | 内部障害2 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 104 | 内部障害3 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 105 | ロープ障害1 | Auto Threshold [自動閾値]が有効であることを確認します。
• センサーの電源を入れ直します。
• 適切な動作に戻らない場合は、お問い合わせください。
| 106 | ロープ障害2 | Auto Threshold [自動閾値]が有効であることを確認します。
• センサーの電源を入れ直します。
• 適切な動作に戻らない場合は、お問い合わせください。
| 107 | デルタ障害 | 用途について検討するため、お問い合わせください。
| 108 | 内部障害4 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 109 | ピーク障害 | Auto Threshold [自動閾値]が有効であることを確認します。
• センサーの電源を入れ直します。
• 適切な動作に戻らない場合は、お問い合わせください。
| 110 | ハードウェア障害1 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 111 | 電源障害 | センサーの電源を入れ直します。
• 電源の定格を確認します。
• 配線を確認します。
• 適切な動作に戻らない場合は、お問い合わせください。
| 112 | ハードウェア障害2 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 113 | ハードウェア障害3 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 114 | ハードウェア障害4 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 115 | テイミング障害1 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 116 | テイミング障害2 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 117 | テイミング障害3 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 118 | DAC障害1 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 119 | DAC障害2 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 120 | DAC障害3 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 121 | DAC障害4 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 122 | SPI障害1 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 123 | SPI障害2 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 124 | セットポイント障害 | アナログのセットポイントが近過ぎています。
最小距離はアナログで150 mm (6 in)、SILで290 mm (11.5 in)です。必要に応じて設定したセットポイントを調整します。（アナログのみ）適切な動作に戻らない場合は、お問い合わせください。
| 125 | ループ1が範囲外 | マグネットが期待測定範囲内に配置されていることを確認します。必要に応じて設定したセットポイントを調整します。（アナログのみ）適切な動作に戻らない場合は、お問い合わせください。
| 126 | ループ2が範囲外 | マグネットが期待測定範囲内に配置されていることを確認します。必要に応じて設定したセットポイントを調整します。（アナログのみ）適切な動作に戻らない場合は、お問い合わせください。
| 127 | EEPROM障害 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 128 | CRC障害 | LP Dashboardを使用して、CRCをリセットします。
適切な動作に戻らない場合は、お問い合わせください。
| 129 | フラッシュ障害 | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。
| 130 | 内部エラー | センサーの電源を入れ直します。適切な動作に戻らない場合は、お問い合わせください。

9. Modbusインターフェース

注意:
RS-485のデータ線の最終処理およびバイアスは以下のとおりです。

バイアス
それぞれのLPシリーズバーには、フェールセーフのスルーレート制限型RS-485/RS-422トランスミッターが使用されています。接続中のデバイス（PLC、DCS、PC、交換器）には追加のバイアス抵抗を設置しないでください。

終端処理
それぞれのLPシリーズバーには、フェールセーフのスルーレート制限型RS-485/RS-422トランスミッターが使用されています。接続中のデバイス（PLC、DCS、PC、交換器）には追加の終端抵抗は必要ありません。
Modbusインターフェース取扱説明書
LPシリーズ

9.1 LP Dashboard

9.1.1 LP Dashboardのインストール
Modbusインターフェースの較正およびセットアップパラメータの調整は、LP-Series Dashboardを使用して行えます。このダッシュボードは、RS485/USB変換器（部品番号380114）を使用してWindows 7以降のどのOSからも実行することができます。
LP Dashboardをインストールして通信を確立するには、次の手順を実施します。

1. 液面トランスミッターに付属のUSBメモリからセットアップソフトウェアをインストールするか、www.temposonics.comにアクセスしてセットアップソフトウェアの最新バージョンをダウンロードします。
2. 液面トランスミッターにRS485/USB変換器を接続し、24 VDC電源を接続したあと、RS485/USB変換器をPCに接続します。セットアップ例を以下に示します。

 图3:セットアップ例

3. LP Dashboardを開き、ドロップダウンメニューからModbusプロトコルを選択します。
4. COM Port [COMポート]を選択します。ソフトウェアに使用可能なCOMポートが表示されます。LP Dashboardを起動する前に変換器を確実に接続してください。未接続の場合はCOMポートが表示されません。
5. 液面トランスミッターの工場出荷時のデフォルトアドレスは247です。アドレスに247を選択します。アドレスが不明な場合は、アドレス範囲の下部または表示メニューにある検索機能を使用してください。

図11:初期画面

9.1.2 ホーム画面
LP Dashboardのホーム画面は、温度計測機能の注文の有無や体積計測が有効か否かによって表示内容が異なります。液面トランスミッターが温度計測機能を備えており、かつ体積計測が有効である場合は、図のようなホーム画面が表示されます。液面トランスミッターが温度計測機能を備えていない場合は、ホーム画面に温度を示す中央のパネルが表示されません。液面トランスミッターの体積計測機能が有効である場合は、ホーム画面に最下部のパネルが表示されません。ホーム画面にアクセスするには、左上の白いバーを押します。

最上部のLevel [レベル]パネルには、液面および境界面の高さ（レベル）を示す計測結果が表示されます。液面フロートのみを選択した場合、液面フロートのみが表示されます。太字の数値はレベルを数で、グラフは数値の時間経過をグラフィカルに表現したものです。赤い線は液面トランスミッターの注文長に基づいたおおよその最大レベルです。液面パネルの右にある数値は、上が液面フロートの下が境界面フロートのトリガーレベルです。これらの液面トランスミッターが受信している荷物の強度を表します。

Temperature [温度]パネルは温度計測機能が注文され、オンになってい る場合のみ表示されます。左側には液面より下にあるすべての温度センサーの平均温度の数値が表示されます。パネル中央の枠グラフには、個々の温度計測ポイントが表示されます。Temperature 1は常にパ イブやホースの底に最も近い位置の温度を示します。

Volume [体積]パネルは最下部にあり、左側には単位を含むGOVP、GOVI、GOVT、GOVU、NSVP、および質量の数値が示されます。中央の枠グラフは、体積の計測値をグラフに表示したものです。

ホーム画面の最下部に沿って、第8項に記載されている障害コードをビジュアル表示しています。緑色は障害がないこと、赤色は障害が発生中であることを示します。その隣の中央にはファームウェアバージョンが、その後にシリアル番号が表示されています。右側にはLP Dashboardで設定できるソフトアラームのランプがあります。緑色はアラームが作動していないこと、赤色はアラームが作動したことを示します。

図12:ホーム画面
9.1.3 Configuration [設定]

図4: Configuration [設定]

Configuration [設定]タブでは、液面トランスミッターを特定の用途に合わせて設定することができます。

工場設定:

Auto Threshold [自動閾値]: デフォルト設定はONです。OFFにしないでください。この機能を使用すると、パフォーマンスが最適化されるようユニットが閾値を自動的に調整します。

Product Float [液面フロート]: デフォルト設定はすべての用途でONです。

Interface Float [境界面フロート]: 2つのフロートを注文した場合のデフォルト設定はONです。ONにしたフロートの数が液面トランスミッターに物理的に取り付けられているフロートの数と異なる場合、液面トランスミッターはエラーとなります。

Serial Number [シリアル番号]: Temposonicsにより製造時に割り当てられたシリアル番号です。シリアル番号は部品の追跡時や交換時に使用します。変更しないでください。

Temperature [温度]: 温度計測機能なしで注文した場合のデフォルト設定はOFFです。温度計測機能付きで注文した場合のデフォルト設定はONです。液面トランスミッターを温度計測機能付きで注文しなかった場合は、Temperature [温度]をONにして作動せず、液面トランスミッターが強制的にエラーとなります。

Display Enable [ディスプレイの有効化]: デフォルト設定はONです。設定をOFFに変更して電源を入れ直すと、ディスプレイをOFFにすることができます。

ユーザーデ設定:

Reverse Measure [逆計測]: Temposonicsより製造時に記した長さを伝わるときの速度で計測します。一般的な範囲は8.9～9.2です。センサー要素を交換する場合を除き、変更しないでください。この数値を変更すると、精度に直接影響が及ぶます。

Signal Gain [信号ゲイン]: 呼び掛け信号パルスの強度です。Temposonicsではあらゆる長さに対して同じ電子機器を使用し、注文長に基づいて信号を調整しています。Temposonicsの工場からの指示がないかぎり、変更しないでください。

9.1.4 Signal Settings [信号設定]

図5: Signal Settings [信号設定]

工場設定:

Gradient [勾配]: 磁歪信号がセンサー素子を伝わるときの速度です。一般的な範囲は8.9～9.2です。センサー要素を交換する場合を除き、変更しないでください。この数値を変更すると、精度に直接影響が及ぶます。

Signal Gain [信号ゲイン]: 呼び掛け信号パルスの強度です。Temposonicsではあらゆる長さに対して同じ電子機器を使用し、注文長に基づいて信号を調整しています。Temposonicsの工場からの指示がないかぎり、変更しないでください。

9.1.5 Level Settings [レベル設定]

図6: Signal Settings [信号設定]
9.1.6 Level Settings [レベル設定]（続き）

ユーザー設定：

Length Units [長さの単位]：工学単位向けに使用する計測単位です。インチで注文した場合のデフォルトはインチで、mmで注文した場合のデフォルトはmmです。この設定にはインチ、フィート、ミリメートル、センチメートル、メートルなどを選択できます。

Product High Alarm [高液面アラーム]：ボックスの隣にあるXや√をクリックすることにより無効化または有効化できるソフトアラームです。液面レベルがボックス内の値を超えるとアラームが作動します。

Product Low Alarm [低液面アラーム]：ボックスの隣にあるXや√をクリックすることにより無効化または有効化できるソフトアラームです。液面レベルがボックス内の値を下回るとアラームが作動します。

Interface High Alarm [高境界面アラーム]：ボックスの隣にあるXや√をクリックすることにより無効化または有効化できるソフトアラームです。境界面レベルがボックス内の値を超えるとアラームが作動します。

Interface Low Alarm [低境界面アラーム]：ボックスの隣にあるXや√をクリックすることにより無効化または有効化できるソフトアラームです。境界面レベルがボックス内の値を下回るとアラームが作動します。

9.1.7 Temperature Settings [温度設定]

図7: Temperature Settings [温度設定]

工場設定：

Number of Sensors [センサーの数]：液面トランスミッターが探索する温度センサーの数を定めます。この数値はモデル番号内の温度センサーの数に一致する必要があります。

Number of Averages [平均の数]：これは温度出力に平均化された温度データの数です。数値が高いほど、平均化された温度データが多いことを示します。数値が高いほど出力は平坦化されますが、処理温度変化の更新が遅くなります。

Position [位置]：パイプの端部を基準とした際の温度センサーの位置です。

Slope [傾き]：温度センサーの較正係数です。デフォルト設定は1.0です。新しい温度センサー素子を注文するまで変更しないでください。

Intercept [切片]：温度センサーの較正係数です。デフォルト設定は0.0です。新しい温度センサー素子を注文するまで変更しないでください。

ユーザー設定：

Temperature Units [温度の単位]：温度設定の計測単位を変更します。Fahrenheit [華氏]またはCelsius [摂氏]を選択できます。

Temperature High Alarm [高温アラーム]：ボックスの隣にあるXや√をクリックすることにより無効化または有効化できるソフトアラームです。温度がボックス内の値を超えるとアラームが作動します。

Temperature Low Alarm [低温アラーム]：ボックスの隣にあるXや√をクリックすることにより無効化または有効化できるソフトアラームです。温度がボックス内の値を下回るとアラームが作動します。

9.1.8 Volume Settings [体積設定]

図8:アナログ設定

ユーザー設定：

Volume Units [体積の単位]：体積出力の計測単位を選択することができます。選択できるのはliters [リットル]、cubic millimeters [立方ミリメートル]、cubic meters [立方メートル]、cubic inches [立方インチ]、cubic feet [立方フィート]、gallons [ガロン]、およびbarrels [バレル]です。
Density Units [密度の単位]: 密度入力の計測単位を選択することができます。選択できるのはkilograms [キログラム], grams [グラム], ounces [オンス], pounds [ポンド], ton [トン], およびtonnes [トン]です。

Mass Units [質量の単位]: 質量出力の計測単位を選択することができます。選択できるのはgrams per milliliter [グラム/ミリリットル], grams per liter [グラム/リットル], kilograms per cubic meter [キログラム/立方メートル], pounds per cubic inch [ポンド/立方インチ], pounds per cubic foot [ポンド/立方フィート], 和ton per cubic yard [トン/立方ヤード], およびtonnes per cubic meter [トン/立方メートル]です。

Correction Method [補正法]: 6A, 6B, 6C, 6C Mod, およびカスタムテーブルを含む利用可能なAPIテーブルから温度補正法を選択することができます。カスタムテーブルを使用すると、最大50ポイントのカスタム温度補正テーブルを入力することができます。

API Gravity [API比重]: 用語集に定義されている液体のAPI比重を入力することができます。6Aおよび6B補正法の場合に使用します。

TEC: 温度補正に使用される熱膨張係数です。許容値は270～930で、6C Mod補正法の場合に使用します。

Reference Temp [基準温度]: 6C Mod補正法の場合の基準温度を指定することができます。

Density [密度]: 質量計算のために計測した密度を入力することができます。

Calculation Mode [計算モード]: ストラップテーブルと球体のどちらを使用するか選択することができます。デフォルト設定はSphere [球体]です。

Working Capacity [稼働容量]: 損量を計算できるようにタンクの稼働容量を入力することができます。

Sphere Radius [球体半径]: 体積計算に使用する球体の半径です。

Sphere Offset [球体オフセット]: タンク形状に基づいて球体の体積計算結果に追加する必要のあるオフセット値です。

Entries [エントリ]: 使用するストラップテーブルのエントリポイント数を選択することができます。最大数は200です。

Export [エクスポートテーブル]: 液面トランスミッターからストラップテーブルをエクスポートすることができます。これは常にストラップテーブルの完成後に行う必要があります。サイト名やタンク番号などの固有の識別名で保存してください。

Import [インポートテーブル]: ファイルからストラップテーブルをインポートすることができます。電子機器の交換時や同一サイズのタンクに利用できます。

ユーザー設定:

Change the device type to DDA [デバイスタイプをDDAに変更]: 出力プロトコルをModbusからDDAに変更できます。ただし、工場のみで使用してください。

Change the device type to USTD [デバイスタイプをUSTDに変更]: 出力プロトコルをModbusからUSTDに変更できます。ただし、工場のみで使用してください。

ユーザー設定:

Reset to Factory Defaults [工場出荷時設定にリセット]: すべての設定をTemposonics工場出荷時の元の設定に戻すことができます。本設定はトラブルシューティングにおける最初のステップとして使用することを目的としています。ゼロおよびスパンの設定点は工場出荷時設定にリセットされますのでご注意ください。

Fix fault code 128 [固定障害コード128]: 障害コード128が赤で表示された場合は、ダッシュボード上のリンクをクリックして障害をクリアしてください。

Cycle power the device [デバイスの再起動]: 液面トランスミッターの電源を自動的にオフおよびオンにしてデバイスを再起動させることができます。

9.1.10 Save Settings [保存設定]
工場設定

Change the device type to DDA [デバイスタイプをDDAに変更]：出力プロトコルをModbusからDDAに変更できます。ただし、工場のみで使用してください。

Change the device type to USTD [デバイスタイプをUSTDに変更]：出力プロトコルをModbusからUSTDに変更できます。ただし、工場のみで使用してください。

ユーザ設定:

Read Settings from File [ファイルから設定を読み出す]：バックアップファイルからLP Dashboardへと工場パラメータをアップロードすることができます。このタスクは通常、保存したバックアップファイルまたはTemposonicsが保守する元のバックアップファイルから実行します。

Write Setting to a File [ファイルに設定を書き込む]：工場パラメータのバックアップファイルをLP DashboardからPCにダウンロードすることができます。このタスクは通常、Read Settings from Gauge [ゲージから設定を読み出す]の後に実行します。注意 – 設定の更新が完了すると色が変化しますので、書き込む前にすべての設定が赤から白に変化するまでお待ちください。

Write Settings to Gauge [ゲージに設定を書き込む]：LP Dashboardに表示された工場パラメータを使用して液面トランスミッターの設定値が更新されます。このタスクは通常、Read Settings from File [ファイルから設定を読み出す]の後に実行します。

Read Settings from Gauge [ゲージから設定を読み出す]：画面に表示されているすべての工場パラメータを更新することができます。すべての設定が赤に変化してから、更新されて白に変わります。

注意:

液面トランスミッターが最初に設定されていなかったすべての工場パラメータを含め、バックアップファイルのコピーの保守は、Temposonics工場でのテストおよび既機能完了後にTemposonicsによって行われます。Temposonicsは必要時に液面トランスミッターのシリアル番号に基づいてバックアップファイルのコピーを提供することができます。支援が必要な場合は、Temposonicsテクニカルサポートまでお問い合わせください。

9.2 ディスプレイの設定
ディスプレイのメニューと機能はセクション6.2に説明があります。ディスプレイのメニューオーガンはセクション6.3に示されています。このセクションではディスプレイ画面の例を示し、表示または編集できる項目について説明しています。ディスプレイにアクセスするための工場出荷時はパスワードは27513です。

9.2.1 メインメニュー

Basic Setup [基本設定] – Modbusアドレス設定などの試運転に必要な標準的な設定にアクセスすることができます。
Calibrate [較正] – 液面レベルや境界面レベルのレベル計測を較正することができます。
Factory [工場設定] – 工場設定にアクセスすることができますが、アクセスする場合はTemposonicsテクニカルサポートの指示に従ってください。

9.2.1.1 基本設定

Display [ディスプレイ] – 表示される値を工学単位、ミリアンペア、パーセンテージのいずれかに変更できます。
Units [単位] – レベルおよび温度の計測単位を選択することができます。
Address [アドレス] – Modbusアドレスを表示し変更することができます。
Signal Strength [信号強度] – 液面および境界レベルの戻り信号の強度を数値で表示することができます。
Modbusインターフェース取扱説明書
LPシリーズ

9.2.1.1 ディスプレイ

Length [長さ] - 選択した単位でレベル計測を表示するためにディスプレイを変更します。
Volume [体積] - 体積計測値の表示を選択した単位に変更します。

9.2.1.1.2 Units [単位]

Length Units [長さの単位] - レベル計測の計測単位を選択することができます。
Temp Units [温度の単位] - 温度計測の計測単位を選択することができます。
Volume Units [体積の単位] - 体積計測値の計測単位を変更することができます。

9.2.1.1.2.1 Length Units [長さの単位]

ミリメートル、センチメートル、メートル、キロメートル、インチ、フィート、ヤードなどを選択します。

9.2.1.1.2.2 Temp Units [温度の単位]

摂氏または華氏を選択します

9.2.1.1.2.3 Volume Units [体積の単位]

liters [リットル], cubic millimeters [立方ミリメートル], cubic centimeters [立方センチメートル], cubic decimeters [立方デシメートル], cubic meters [立方メートル], cubic inches [立方インチ], cubic feet [立方フィート], gallons [ガロン], およびbarrels [バレル] のいずれかを選択します。
9.2.1.1.3 Address [アドレス]

Modbusアドレスを表示し変更することができます。

9.2.1.1.4 Signal Strength [信号強度]

Prod Trig Lvl - 液面レベルの戻り信号の強度を数値で表示することができます。
Int Trig Lvl - 境界面レベルの戻り信号の強度を数値で表示することができます。LevelLimit液面トランスミッターでのみ使用可能です。

9.2.1.1.4.1 Prod Trig Lvl [液面トリガーレベル]

戻り信号の強度を示す数値は、編集することができません。

9.2.1.1.4.2 Int Trig Lvl [境界トリガーレベル]

戻り信号の強度を示す数値は、編集することができません。このオプションが有効化されていない場合は、セクション9.2.1.1.4.3に説明されているように画面にNot Enabled [有効化されていません]と表示されます。有効化されている場合は、上記のようにトリガーレベルが表示されます。

9.2.1.1.4.3 Limit Trig Lvl [限界トリガーレベル]

戻り信号の強度を示す数値は、編集することができません。このオプションが有効化されていない場合は、図に示されているように画面にNot Enabled [有効化されていません]と表示されます。有効化されている場合は、セクション9.2.1.1.4.1に説明されているようにトリガーレベルが表示されます。

9.2.1.2 Calibrate [較正]

Product Level [液面レベル] - 液面レベルを較正することができます。
Interface Level [境界面レベル] - 境界面レベルを較正することができます。
Limit Level [限界レベル] - Not Enabled [有効化されていません]
9.2.1.2.1 Product Level [液面レベル]

Current Level [現在のレベル] – 現在のタンクレベルに基づいて較正することができます。
Offset [オフセット] – レベルのオフセット値を変更することによって較正することができますが、推奨しておりません。

9.2.1.2.1.1 Current Level [現在のレベル]

液面レベルに対応する目的の値を入力します。

9.2.1.2.1.2 Offset [オフセット]

使用の場合は必ず工場テクニカルサポートに従うこと

9.2.1.2.2 Interface Level [境界面レベル]

Current Level [現在のレベル] – 現在のタンクレベルに基づいて較正することができます。
Offset [オフセット] – レベルのオフセット値を変更することによって較正することができますが、推奨しておりません。

9.2.1.2.2.1 Current Level [現在のレベル]

境界面レベルに対応する目的の値を入力します。境界面レベルが無効化されている場合は、セクション9.2.1.2.3.1に説明されているようにNot Enabled [有効化されていません]と表示されます。

9.2.1.2.2.2 Offset [オフセット]

使用の場合は必ず工場テクニカルサポートに従うこと。境界面レベルが無効化されている場合は、セクション9.2.1.2.3.2に説明されているようにNot Enabled [有効化されていません]と表示されます。
9.2.1.2.3 Limit Level [限界レベル]

Current Level [現在のレベル] – 現在のタンクレベルに基づいて較正することができます。
Offset [オフセット] – レベルのオフセット値を変更することによって較正することができますが、推奨していません。

9.2.1.2.3.1 Current Level [現在のレベル]

使用の場合は必ず工場テクニカルサポートに従うこと。有効化されている場合は、セクション9.2.1.2.1.2に説明されているように値が表示されます。無効化されている場合は、上記のようにNot Enabled [有効化されていません]が表示されます。

9.2.1.2.3.2 Offset [オフセット]

使用の場合は必ず工場テクニカルサポートに従うこと。有効化されている場合は、セクション9.2.1.2.1.2に説明されているように値が表示されます。無効化されている場合は、上記のようにNot Enabled [有効化されていません]が表示されます。

9.2.1.3 Factory [工場]

Settings [設定] – 工場設定にアクセスすることができます。
Temp Setup [温度設定] – 温度計測機能が付与されている場合は、温度計測を設定することができます。
Float Config [フロート設定] – 使用するフロートの数を設定することができます。
Auto Threshold [自動閾値] – 自動閾値を有効化/無効化することができます。
Reset to Factory [工場出荷時設定にリセット] – すべての設定項目を工場出荷時設定にリセットすることができます。
Baud Rate [BAUDレート] – 使用可能なBAUDレート（4800、9600、または19200 BAUD）を表示し変更することができます。
No or Even Parity [パリティなしまたは偶数パリティ]オプションを選択できます。
Volume [体積] – 体積の計測を有効または無効にすることができます。

9.2.1.3.1 Settings [設定]

Gradient [勾配] – センサー素子を変更する場合は較正係数を変更することができます。
シリアル番号 – Tempsonicsにより製造時に割り当てられたシリアル番号です。シリアル番号は部品の追跡時や交換時に使用します。
HW Revision [ハードウェアリビジョン] – 液面トランスミッターのハードウェアに関する読み取り専用の情報です。
SW Revision [ソフトウェアリビジョン] – 液面トランスミッターのファームウェアに関する読み取り専用の情報です。
SARA Blanking [SARAブランキング] – 召喚信号パルスのブランキングウインドウを調整することができます。
Magnet Blanking [マグネットブランキング] – 2つのフロート間のブランキングウインドウを調整することができます。
Gain [ゲイン] – 召喚信号パルスの強度を調整することができます。
Min Trig Level – 戻り信号が従う必要がある閾値を調整することができます。

9.2.1.3.2 Factory Settings [工場設定]

使用の場合は必ず工場テクニカルサポートに従うこと。有効化されている場合は、セクション9.2.1.2.1.2に説明されているように値が表示されます。無効化されている場合は、上記のようにNot Enabled [有効化されていません]が表示されます。
9.2.1.3.1.1 Gradient [勾配]

勾配は磁歪信号がセンサーを伝わるときの速度です。一般的な範囲は8.9〜9.2です。センサーを交換する場合は変更しないでください。この数値を変更すると、精度に直接影響が及ぶます。

9.2.1.3.2 Serial Number [シリアル番号]

Tempsonicsにより製造時に割り当てられたシリアル番号です。シリアル番号は部品の追跡時に使用します。

9.2.1.3.3 HW Revision [ハードウェア修正]

液面トランスミッターのハードウェアに関する読み取り専用の情報です。

9.2.1.3.4 SW Revision [ソフトウェア修正]

液面トランスミッターのファームウェアに関する読み取り専用の情報です。

9.2.1.3.5 SARA Blanking [SARAブランキング]

呼び掛け信号パルスのブランキングウインドウを調整することができます。RefineMEとSoCleanは25にする必要があります。Tank SLAYERとCHAMBEREDは40にする必要があります。調整する場合は、Tempsonicsテクニカルサポートまでご相談ください。

9.2.1.3.6 Magnet Blanking [マグネットブランキング]

2つのフロート関のブランキングウインドウを調整することができます。デフォルトは20です。調整する場合は、Tempsonicsテクニカルサポートまでご相談ください。
ゲインは呼び掛け信号パルスの強度です。Temposonicsではあらゆる長さに対して同じ電子機器を使用し、注文長に基づいて信号を調整しています。調整する場合は、Temposonicsテクニカルサポートまでご相談ください。

9.2.1.3.1.7 Gain [ゲイン]

Temp Enable [温度の有効化] – 温度計測機能をオンまたはオフにすることができます。温度計測機能付きでユニットを発注していない場合は、この機能を有効にすることはできません。

9.2.1.3.2 Temp Setup [温度設定]

No of Temp [温度計測ポイントの数] – 液面トランスミッターが探索する温度計測ポイントの数を調整することができます。発注された温度センサーの物理的な数を調整することはできません。Modbusでは、1個、5個、12個、または16個の温度センサーを選択できます。

9.2.1.3.2.1 Temp Enable [温度の有効化]

戻り信号が従う必要がある閾値を調整することができます。デフォルト設定は150です。調整する場合は、Temposonicsテクニカルサポートまでご相談ください。

9.2.1.3.1.8 Min Trig Level [最小トリガーレベル]

温度計測機能をオンまたはオフにすることができます。温度計測機能付きでユニットを発注していない場合は、この機能を有効にするとはできません。
液面トランスミッターが探索する温度計測ポイントの数を調整することができる。発注された温度センサーの物理的な数を調整することはできません。Modbusでは、1個、5個、12個、または16個の温度センサーを選択できます。

9.2.1.3.3 Float Config [フロート設定]

Product Only [液面レベルのみ]、Interface Only [境界面レベルのみ]、およびProduct/Interface [液面/境界面レベル]を選択し、Limitオプションを追加することができます。Limitオプションは、LevelLimit液面トランスミッターでのみ有効化されます。

9.2.1.3.4 Auto Threshold [自動閾値]

デフォルト設定はONです。OFFにはしないでください。この機能を使用すると、パフォーマンスが最適化されるようユニットが閾値を自動的に調整します。

9.2.1.3.5 Reset to Factory [工場出荷時設定にリセット]

すべての設定をTemposonics工場出荷時の元の設定に戻すことができます。本設定はトラブルシューティングにおける最初のステップとして使用することを目的としています。ゼロおよびスパンの設定点は工場出荷時設定にリセットされますのでご注意ください。

9.2.1.3.6 Baud Rate [ボーレート]

使用可能なBAUDレート（4800、9600、または19200 BAUD）を表示し変更することができます。No or Even Parity [パリティなしまたは偶数パリティ]オプションを選択できます。

9.2.1.3.7 Volume [体積]

体積の計測を有効または無効にすることができます。
9.3 Modbusファンクションコード

通信パラメータ:

Modbus: 4800, 9600, または 19200 8, N, 1
（リファレンス）モニター: Modbus RTU可変BAUDレート8, E, 1

次のModbusファンクションコードをサポートしています。

ファンクション03 - Read Holding Registers [保持レジスタの読み出し]
ファンクション04 - Read Input Registers [入力レジスタの読み出し]
ファンクション06 - Preset Single Register [シンクルレジスタのプリセット]
ファンクション08 - Diagnostics 1) [診断] (サブファンクション00, Return Query Data [クエリーデータの返答])
ファンクション08 - Diagnostics 2) [診断] (サブファンクション01, Restart Communications Option [通信オプションの初期化])
ファンクション08 - Diagnostics 3) [診断] (サブファンクション04, Force Listen Only Mode [受信オンリーモードの強制])
ファンクション16 - Preset Multiple Registers [複数レジスタのプリセット]
ファンクション17 - Report Slave ID [スレーブIDのレポート]
ファンクション03 - Read Holding Registers [保持レジスタの読み出し]
デバイスはこのメッセージに対し、要求されたデータレジスタの内容を返すことによって応答します。

次の実装固有の検討事項が適用されます。

次の実装固有の検討事項が適用されます。

デバイスが受信オーリーモードの場合、デバイスはこのメッセージに対して応答しないことによって応答します（要求に対する応答メッセージは送信されません）。

デバイスが受信オーリーモードでない場合は、次のように応答します。

スレーブアドレス:エコー
ファンクション:08H
サブファンクション(上位):00H
サブファンクション(下位):01H
クエリーデータ(16ビット):エコー (0000HまたはFF00H)
エラーチェック:16ビットCRC／8ビットLRC

フレーム08 - Diagnostics 4) [診断] (サブファンクション04, Force Listen Only Mode [受信オーリーモードの強制])
デバイスはこの要求に対し、受信オーリーモードに切り替えることによって応答します。メッセージは受信および解析されますが、応答メッセージは送信されません。受信オーリーモードを解除するときは、「Restart Communications Option [通信オプションの初期化]」要求（ファンクション08, サブファンクション01）を発行するか、電源を入れ直してください。

ファンクション16 - Preset Multiple Registers [複数レジスタのプリセット]
デバイスは応答すると、スレーブアドレス、ファンクションコード、開始アドレス、プリセットしたレジスタの数を返します。

ファンクション17 - Report Slave ID [スレーブIDのレポート]
デバイスはこの要求に対して次のデータを返します。
スレーブアドレス:エコー
ファンクション:11H
バイトカウント:05H
スレーブID:FFH
RUNインジケータステータス:FFH (ON)
追加データ: 'DMS'
エラーチェック:16ビットCRC／8ビットLRC

Modbus例外コード
次の標準Modbus例外コードが実装されています。

エラーコード01 (不正ファンクション)
以下の場合に発行されます。

- 03, 04, 06, 08, 16, 17以外のファンクションが要求された
- ファンクション08が要求され、かつ00, 01, 04以外のサブファンクションが要求された場合、あるいはセット内の無効なレジスタが要求された場合はエラーコード07で処理される。

エラーコード02 (不正データアドレス)
以下の場合に発行されます。

- ファンクション03または04が要求され、かつ開始レジスタ番号が5198より大きい(35198または45198より大きいレジスタ)
- ファンクション03または04が要求され、かつ要求されたレジスタセット内のレジスタが無効である
エラーコード03（不正データ）
以下の場合同に発行されます。
△ ファンクション03または04が必要され、かつデータポイント数が800より大きい

エラーコード06（ビジー）
以下の場合同に発行されます。
△ デバイスのLCDメニューが有効である

エラーコード07（不正操作）
以下の場合同に発行されます。
△ デバイスが書き込み保護されている間にファンクション06または16が要求された
△ ファンクション08が無効なサブファンクションで要求された

9.4 Modbusレジスタマップ

<table>
<thead>
<tr>
<th>Modbusレジスタ</th>
<th>データアドレス</th>
<th>データの説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>30001</td>
<td>0000</td>
<td>液面レベル上位ワード (x 1000)</td>
<td>2,19ページ</td>
</tr>
<tr>
<td>30002</td>
<td>0001</td>
<td>液面レベル下位ワード (x 1000)</td>
<td>3,19ページ</td>
</tr>
<tr>
<td>30003</td>
<td>0002</td>
<td>境界面レベル上位ワード (x 1000)</td>
<td></td>
</tr>
<tr>
<td>30004</td>
<td>0003</td>
<td>境界面レベル下位ワード (x 1000)</td>
<td></td>
</tr>
<tr>
<td>30005</td>
<td>0004</td>
<td>リミットレベル上位ワード (x 1000)</td>
<td>無効</td>
</tr>
<tr>
<td>30006</td>
<td>0005</td>
<td>リミットレベル下位ワード (x 1000)</td>
<td>無効</td>
</tr>
<tr>
<td>30007</td>
<td>0006</td>
<td>温度1上位ワード (x 10000)</td>
<td>4,19ページ</td>
</tr>
<tr>
<td>30008</td>
<td>0007</td>
<td>温度1下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30009</td>
<td>0008</td>
<td>温度2上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30010</td>
<td>0009</td>
<td>温度2下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30011</td>
<td>0010</td>
<td>温度3上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30012</td>
<td>0011</td>
<td>温度3下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30013</td>
<td>0012</td>
<td>温度4上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30014</td>
<td>0013</td>
<td>温度4下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30015</td>
<td>0014</td>
<td>温度5上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30016</td>
<td>0015</td>
<td>温度5下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30017</td>
<td>0016</td>
<td>平均温度上位ワード (x 10000)</td>
<td>5,19ページ</td>
</tr>
<tr>
<td>30018</td>
<td>0017</td>
<td>平均温度下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30019</td>
<td>0018</td>
<td>GOVP上位ワード</td>
<td>6,19ページ</td>
</tr>
<tr>
<td>30020</td>
<td>0019</td>
<td>GOVP下位ワード</td>
<td></td>
</tr>
<tr>
<td>30021</td>
<td>0020</td>
<td>GOVI上位ワード</td>
<td>7,19ページ</td>
</tr>
<tr>
<td>30022</td>
<td>0021</td>
<td>GOVI下位ワード</td>
<td></td>
</tr>
<tr>
<td>30023</td>
<td>0022</td>
<td>GOVT上位ワード</td>
<td>8,19ページ</td>
</tr>
<tr>
<td>30024</td>
<td>0023</td>
<td>GOVT下位ワード</td>
<td></td>
</tr>
<tr>
<td>30025</td>
<td>0024</td>
<td>GOVU上位ワード</td>
<td>9,19ページ</td>
</tr>
<tr>
<td>30026</td>
<td>0025</td>
<td>GOVU下位ワード</td>
<td></td>
</tr>
<tr>
<td>30027</td>
<td>0026</td>
<td>NSVP上位ワード</td>
<td>10,19ページ</td>
</tr>
<tr>
<td>30028</td>
<td>0027</td>
<td>NSVP下位ワード</td>
<td></td>
</tr>
<tr>
<td>30029</td>
<td>0028</td>
<td>質量上位ワード</td>
<td></td>
</tr>
<tr>
<td>30030</td>
<td>0029</td>
<td>質量下位ワード</td>
<td></td>
</tr>
</tbody>
</table>
9.4 Modbusレジスタマップ (続き)

<table>
<thead>
<tr>
<th>Modbusレジスタ</th>
<th>データアドレス</th>
<th>データの説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>30031</td>
<td>0030</td>
<td>温度補正法上位ワード</td>
<td></td>
</tr>
<tr>
<td>30032</td>
<td>0031</td>
<td>温度補正法下位ワード</td>
<td></td>
</tr>
<tr>
<td>30033</td>
<td>0032</td>
<td>API比重上位ワード (x 100)</td>
<td></td>
</tr>
<tr>
<td>30034</td>
<td>0033</td>
<td>API比重下位ワード (x 100)</td>
<td></td>
</tr>
<tr>
<td>30035</td>
<td>0034</td>
<td>輸送容量上位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30036</td>
<td>0035</td>
<td>輸送容量下位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30037</td>
<td>0036</td>
<td>TEC上位ワード (x 10000000)</td>
<td></td>
</tr>
<tr>
<td>30038</td>
<td>0037</td>
<td>TEC下位ワード (x 10000000)</td>
<td></td>
</tr>
<tr>
<td>30039</td>
<td>0038</td>
<td>密度上位ワード (x 100)</td>
<td></td>
</tr>
<tr>
<td>30040</td>
<td>0039</td>
<td>密度下位ワード (x 100)</td>
<td></td>
</tr>
<tr>
<td>30041</td>
<td>0040</td>
<td>基準温度上位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30042</td>
<td>0041</td>
<td>基準温度下位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30043</td>
<td>0042</td>
<td>体積計算モード上位ワード</td>
<td></td>
</tr>
<tr>
<td>30044</td>
<td>0043</td>
<td>体積計算モード下位ワード</td>
<td></td>
</tr>
<tr>
<td>30045</td>
<td>0044</td>
<td>球半径上位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30046</td>
<td>0045</td>
<td>球半径下位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30047</td>
<td>0046</td>
<td>球体オフセット上位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30048</td>
<td>0047</td>
<td>球体オフセット下位ワード (x 10)</td>
<td></td>
</tr>
<tr>
<td>30049</td>
<td>0048</td>
<td>平均間隔上位ワード</td>
<td></td>
</tr>
<tr>
<td>30050</td>
<td>0049</td>
<td>平均間隔下位ワード</td>
<td></td>
</tr>
<tr>
<td>30051</td>
<td>0050</td>
<td>アラーム/ステータス上位ワード</td>
<td></td>
</tr>
<tr>
<td>30052</td>
<td>0051</td>
<td>アラーム/ステータス下位ワード</td>
<td></td>
</tr>
<tr>
<td>30053</td>
<td>0052</td>
<td>VCF計算エラーステータス</td>
<td></td>
</tr>
</tbody>
</table>

Modbusレジスタマップ (続き)

<table>
<thead>
<tr>
<th>Modbusレジスタ</th>
<th>データアドレス</th>
<th>データの説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>30054</td>
<td>0053</td>
<td>体積計算エラーステータス</td>
<td></td>
</tr>
<tr>
<td>30055</td>
<td>0054</td>
<td>EEPROM CRCをリセット</td>
<td></td>
</tr>
<tr>
<td>30056</td>
<td>0055</td>
<td>EEPROMデータを工場出荷時設定にリセット</td>
<td></td>
</tr>
<tr>
<td>30057</td>
<td>0056</td>
<td>EEPROMデータをデフォルトにリセット</td>
<td></td>
</tr>
<tr>
<td>30058</td>
<td>0057</td>
<td>温度センサーステータス上位ワード</td>
<td></td>
</tr>
<tr>
<td>30059</td>
<td>0058</td>
<td>温度センサーステータス下位ワード</td>
<td></td>
</tr>
<tr>
<td>30060 - 30099</td>
<td>0059 - 0098</td>
<td>予約済み</td>
<td></td>
</tr>
<tr>
<td>30100</td>
<td>0099</td>
<td>温度の単位上位</td>
<td></td>
</tr>
<tr>
<td>30101</td>
<td>0100</td>
<td>温度の単位下位</td>
<td></td>
</tr>
<tr>
<td>30102</td>
<td>0101</td>
<td>密度の単位上位</td>
<td></td>
</tr>
<tr>
<td>30103</td>
<td>0102</td>
<td>密度の単位下位</td>
<td></td>
</tr>
<tr>
<td>30104</td>
<td>0103</td>
<td>体積の単位上位</td>
<td></td>
</tr>
<tr>
<td>30105</td>
<td>0104</td>
<td>体積の単位下位</td>
<td></td>
</tr>
<tr>
<td>30106</td>
<td>0105</td>
<td>長さの単位上位</td>
<td></td>
</tr>
<tr>
<td>30107</td>
<td>0106</td>
<td>長さの単位下位</td>
<td></td>
</tr>
<tr>
<td>30108</td>
<td>0107</td>
<td>質量の単位上位</td>
<td></td>
</tr>
<tr>
<td>30109</td>
<td>0108</td>
<td>質量の単位下位</td>
<td></td>
</tr>
<tr>
<td>30110</td>
<td>0109</td>
<td>新しいデバイスアドレスを設定</td>
<td></td>
</tr>
<tr>
<td>30111 - 30119</td>
<td>0110 - 0108</td>
<td>予約済み</td>
<td></td>
</tr>
<tr>
<td>30120 - 30129</td>
<td>0119 - 0108</td>
<td>予約済み</td>
<td></td>
</tr>
<tr>
<td>30200 - 30209</td>
<td>199 - 0100</td>
<td>液面レベル上位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30210 - 30219</td>
<td>200 - 0100</td>
<td>液面レベル下位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30220 - 30229</td>
<td>201 - 0100</td>
<td>境界面レベル上位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30230 - 30239</td>
<td>202 - 0100</td>
<td>境界面レベル下位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30240 - 30249</td>
<td>203 - 0100</td>
<td>リミットレベル上位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30250 - 30259</td>
<td>204 - 0100</td>
<td>リミットレベル下位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30260 - 30269</td>
<td>205 - 0100</td>
<td>温度1上位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30270 - 30279</td>
<td>206 - 0100</td>
<td>温度1下位ワード (x 100000)</td>
<td></td>
</tr>
<tr>
<td>30280 - 30289</td>
<td>207 - 0100</td>
<td>温度2上位ワード (x 100000)</td>
<td></td>
</tr>
</tbody>
</table>
9.4 Modbusレジスタマップ（続き）

<table>
<thead>
<tr>
<th>Modbusレジスタ</th>
<th>データアドレス</th>
<th>データの説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>30209</td>
<td>208</td>
<td>温度2下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30210</td>
<td>209</td>
<td>温度3上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30211</td>
<td>210</td>
<td>温度3下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30212</td>
<td>211</td>
<td>温度4上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30213</td>
<td>212</td>
<td>温度4下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30214</td>
<td>213</td>
<td>温度5上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30215</td>
<td>214</td>
<td>温度5下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30216</td>
<td>215</td>
<td>温度6上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30217</td>
<td>216</td>
<td>温度6下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30218</td>
<td>217</td>
<td>温度7上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30219</td>
<td>218</td>
<td>温度7下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30220</td>
<td>219</td>
<td>温度8上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30221</td>
<td>220</td>
<td>温度8下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30222</td>
<td>221</td>
<td>温度9上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30223</td>
<td>222</td>
<td>温度9下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30224</td>
<td>223</td>
<td>温度10上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30225</td>
<td>224</td>
<td>温度10下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30226</td>
<td>225</td>
<td>温度11上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30227</td>
<td>226</td>
<td>温度11下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30228</td>
<td>227</td>
<td>温度12上位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30229</td>
<td>228</td>
<td>温度12下位ワード (x 10000)</td>
<td></td>
</tr>
<tr>
<td>30230</td>
<td>229</td>
<td>5.19ページ</td>
<td></td>
</tr>
<tr>
<td>30231</td>
<td>230</td>
<td>6.19ページ</td>
<td></td>
</tr>
<tr>
<td>30232</td>
<td>231</td>
<td>GOVP上位ワード †</td>
<td></td>
</tr>
<tr>
<td>30233</td>
<td>232</td>
<td>GOVP下位ワード †</td>
<td></td>
</tr>
</tbody>
</table>
9.4 Modbusレジスタマップ（続き）

<table>
<thead>
<tr>
<th>Modbusレジスタ</th>
<th>データアドレス</th>
<th>データの説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>30262</td>
<td>261</td>
<td>平均間隔上位ワード</td>
<td>18, 19ページ</td>
</tr>
<tr>
<td>30263</td>
<td>262</td>
<td>平均間隔下位ワード</td>
<td>19, 20ページ</td>
</tr>
<tr>
<td>30264</td>
<td>263</td>
<td>アラーム／ステータス上位ワード</td>
<td></td>
</tr>
<tr>
<td>30265</td>
<td>264</td>
<td>アラーム／ステータス下位ワード</td>
<td></td>
</tr>
<tr>
<td>30266</td>
<td>265</td>
<td>VCF計算電流スケール</td>
<td>20, 20ページ</td>
</tr>
<tr>
<td>30267</td>
<td>266</td>
<td>体積計算電流スケール</td>
<td>21, 20ページ</td>
</tr>
<tr>
<td>30268</td>
<td>267</td>
<td>温度13上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30269</td>
<td>268</td>
<td>温度13下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30270</td>
<td>269</td>
<td>温度14上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30271</td>
<td>270</td>
<td>温度14下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30272</td>
<td>271</td>
<td>温度15上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30273</td>
<td>272</td>
<td>温度15下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30274</td>
<td>273</td>
<td>温度16上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30275</td>
<td>274</td>
<td>温度16下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30276</td>
<td>275</td>
<td>温度17上位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30277</td>
<td>276</td>
<td>温度17下位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30278</td>
<td>277</td>
<td>温度18上位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30279</td>
<td>278</td>
<td>温度18下位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30280</td>
<td>279</td>
<td>温度19上位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30281</td>
<td>280</td>
<td>温度19下位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30282</td>
<td>281</td>
<td>温度20上位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30283</td>
<td>282</td>
<td>温度20下位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30284</td>
<td>283</td>
<td>温度21上位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30285</td>
<td>284</td>
<td>温度21下位ワード</td>
<td>無効</td>
</tr>
</tbody>
</table>

Modbusレジスタマップ（続き）

<table>
<thead>
<tr>
<th>Modbusレジスタ</th>
<th>データアドレス</th>
<th>データの説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>30286</td>
<td>285</td>
<td>温度22上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30287</td>
<td>286</td>
<td>温度22下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30288</td>
<td>287</td>
<td>温度23上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30289</td>
<td>288</td>
<td>温度23下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30290</td>
<td>289</td>
<td>温度24上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30291</td>
<td>290</td>
<td>温度24下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30292</td>
<td>291</td>
<td>温度25上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30293</td>
<td>292</td>
<td>温度25下位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30294</td>
<td>293</td>
<td>温度26上位ワード</td>
<td>(x 10000)</td>
</tr>
<tr>
<td>30295</td>
<td>294</td>
<td>温度26下位ワード</td>
<td>無効</td>
</tr>
<tr>
<td>30300</td>
<td>299</td>
<td>温度の単位上位</td>
<td>23, 20ページ</td>
</tr>
<tr>
<td>30301</td>
<td>300</td>
<td>温度の単位下位</td>
<td></td>
</tr>
<tr>
<td>30302</td>
<td>301</td>
<td>密度の単位上位</td>
<td>24, 20ページ</td>
</tr>
<tr>
<td>30303</td>
<td>302</td>
<td>密度の単位下位</td>
<td></td>
</tr>
<tr>
<td>30304</td>
<td>303</td>
<td>体積の単位上位</td>
<td>25, 20ページ</td>
</tr>
<tr>
<td>30305</td>
<td>304</td>
<td>体積の単位下位</td>
<td></td>
</tr>
<tr>
<td>30306</td>
<td>305</td>
<td>長さの単位上位</td>
<td>26, 20ページ</td>
</tr>
<tr>
<td>30307</td>
<td>306</td>
<td>長さの単位下位</td>
<td></td>
</tr>
<tr>
<td>30308</td>
<td>307</td>
<td>質量の単位上位</td>
<td>27, 20ページ</td>
</tr>
<tr>
<td>30309</td>
<td>308</td>
<td>質量の単位下位</td>
<td></td>
</tr>
<tr>
<td>30310</td>
<td>309</td>
<td>新しいデバイスマレットを設定</td>
<td>28, 20ページ</td>
</tr>
<tr>
<td>30311-31108</td>
<td></td>
<td>予約済み</td>
<td>22, 20ページ</td>
</tr>
<tr>
<td>31109</td>
<td>1108</td>
<td>アラームの単位上位</td>
<td>29, 20ページ</td>
</tr>
<tr>
<td>31110</td>
<td>1109</td>
<td>アラームの単位下位</td>
<td></td>
</tr>
<tr>
<td>31111</td>
<td>1110</td>
<td>境界面高さアラーム上位</td>
<td>30, 21ページ</td>
</tr>
<tr>
<td>31112</td>
<td>1111</td>
<td>境界面高さアラーム下位</td>
<td>(x 100)</td>
</tr>
<tr>
<td>31113</td>
<td>1112</td>
<td>境界面低さアラーム上位</td>
<td>31, 21ページ</td>
</tr>
<tr>
<td>31114</td>
<td>1113</td>
<td>境界面低さアラーム下位</td>
<td>(x 100)</td>
</tr>
<tr>
<td>31115</td>
<td>1114</td>
<td>液面高さアラーム上位</td>
<td>32, 21ページ</td>
</tr>
<tr>
<td>31116-31115</td>
<td></td>
<td>液面高さアラーム下位</td>
<td>(x 100)</td>
</tr>
</tbody>
</table>
9.4 Modbusレジスタマップ（続き）

<table>
<thead>
<tr>
<th>Modbusレジスタ</th>
<th>データアドレス</th>
<th>データの説明</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>3117</td>
<td>1116</td>
<td>液面低位アラーム上位 (x 100)</td>
<td>33, 21ページ</td>
</tr>
<tr>
<td>3118</td>
<td>1117</td>
<td>液面低位アラーム下位 (x 100)</td>
<td></td>
</tr>
<tr>
<td>3119</td>
<td>1118</td>
<td>リミット高位アラーム上位 (x 100)</td>
<td>34, 21ページ</td>
</tr>
<tr>
<td>3120</td>
<td>1119</td>
<td>リミット高位アラーム下位 (x 100)</td>
<td></td>
</tr>
<tr>
<td>3121</td>
<td>1120</td>
<td>リミット低位アラーム上位 (x 100)</td>
<td>35, 21ページ</td>
</tr>
<tr>
<td>3122</td>
<td>1121</td>
<td>リミット低位アラーム下位 (x 100)</td>
<td></td>
</tr>
<tr>
<td>3123</td>
<td>1122</td>
<td>高平均温度アラーム上位 (x 100)</td>
<td>36, 21ページ</td>
</tr>
<tr>
<td>3124</td>
<td>1123</td>
<td>高平均温度アラーム下位 (x 100)</td>
<td></td>
</tr>
<tr>
<td>3125</td>
<td>1124</td>
<td>低平均温度アラーム上位 (x 100)</td>
<td>37, 21ページ</td>
</tr>
<tr>
<td>3126</td>
<td>1125</td>
<td>低平均温度アラーム下位</td>
<td></td>
</tr>
<tr>
<td>3127-37216</td>
<td>1126-7215</td>
<td>予約済み</td>
<td>22, 20ページ</td>
</tr>
</tbody>
</table>

9.5 単位の使い方

読み出しされまたはプリセットされたレジスタは、現在の単位の種類に設定された単位を使用してこれらを実行します。

たとえば、現在の単位の種類が‘Length’[長さ]で、かつ現在単位として‘Feet’[フィート]が選択されている場合、戻り値はその単位での値を取ります。設定する値にもその単位を使用するようにしてください。

9.6 Modbusレジスタマップに関する注意事項

1. Modbus Function 03 (Read Holding Registers [保持レジスタの読み出し]) または Modbus Function 04 (Read Input Registers [入力レジスタの読み出し]) を使用すると、すべてのレジスタにアクセスすることができます。ただし、本実装ではすべてのレジスタが読み取り専用です。

たとえば、レジスタ30001および30002（ファンクション03を使用）は、レジスタ40001および40002（ファンクション04を使用）として読み出すこともできます。

2. 「上位ワード」とおよび「下位ワード」として特定されるペアのレジスタは、「上位ワード」を先にして一緒に読み出す必要があります。両値はマスターで連結されて32ビットの符号なし「ロングワード」になる必要があります。

たとえば、レジスタ30001（上位ワード）= 0002H（先に読み出すことが必要）レジスタ30002（下位ワード）= 3F8CH
ロングワード（32ビット）= 00023F8CH（10進数の147340）
または
レジスタ30001（上位ワード）= 2
レジスタ30002（下位ワード）= 16268
レジスタ30001 x 65536のように乗算：2 x 65536 = 131072
結果をレジスタ30002に加算：131072 + 16268 = 147340

3. ‘(x 10)’, ‘(x 100)’, ‘(x 1000)’, ‘(x100000000)’, または ‘(x1000)’ として特定されたすべてのレジスタには、データ値の小数部分が欠落しないように送信前に10, 100, 1000, 10000, または100000000の倍数による拡大（乗算）を行っています。マスター側では必要に応じてこれらの値を拡大係数で除算する必要があります。

たとえば、
レジスタ30001（16ビット上位ワード）= 0002H
ロングワード（32ビット）= 00023F8CH（10進数の147340）
100で除算すると、実際の値 = 147.340

4. 個々のデジタル温度

5. 平均液中温度

6. GOVP = Gross Observed Volume Product（液体容量）

7. GOVI = Gross Observed Volume Interface（境界面下の液体容量）

8. GOVT = Gross Observed Volume Total（総容量）

9. GOVU = Gross Observed Volume Ullage（目減り容量）
10. NVSP = Net Standard Volume of Product（正味標準液体容量）

11. 温度補正法
5つの方法から選択できます。
1 = (6A) 重油
2 = (6B) 軽油
3 = (6C) 化学品
4 = 係数および可動基準温度 (6C Mod) が6Cよりも幅広い化学品
5 = カスタムテーブル

12. 熱膨張係数 (TEC: Thermal Expansion Coefficient)
温度補正法である「6C」は、計測対象製品の熱膨張係数を使用して体積補正係数を決定します。許容値は270.0〜930.0です。TECの単位は10E-6/°Fです。

13. 密度
温度補正法「6C」および「カスタムテーブル」では、正味質量計算のために計測される製品の（所定の基準温度における）密度を入力する必要があります。

14. 基準温度
温度補正法である「6C Mod」を使用した際のVCF計算に望ましい基準となる温度です。

15. 体積計算モード
体積計算を実行するモードで、お好みに合わせて次の方法で行います。
1 = ストラップテーブルを使用
0 = 球体計算を使用

16. 球体半径
（球体計算モードを使用して）体積計算を実施する際の球体の半径です。

17. 球体オフセット
（球体計算モードを使用して）体積計算を実施する際の球体のオフセットです。

18. 平均間隔
タイミングを計った方法ですべてのレベル、温度、および体積の計算を平均化することができます。許容値は次のとおりです。
0 = 1秒（デフォルト）
5 = 5秒
10 = 10秒
15 = 15秒
20 = 20秒
25 = 25秒
30 = 30秒
35 = 35秒
40 = 40秒
45 = 45秒
50 = 50秒
55 = 55秒
60 = 60秒

9.7 Modbusレジスタマップに関する注意事項（続き）

19. アラーム／ステータスピット定義
D1 境界面アラーム上位
D2 境界面アラーム下位
D3 液面アラーム上位
D4 液面アラーム下位
D5 リミットアラーム上位
D6 リミットアラーム下位
D7 平均温度アラーム上位
D8 平均温度アラーム下位
D9 マグネットが不在
D10 デジタル温度0エラー
D11 デジタル温度1エラー
D12 デジタル温度2エラー
D13 デジタル温度3エラー
D14 デジタル温度4エラー
D15 デジタル平均温度エラー
D16 ~ D32 予約済み
それぞれの対応するアラームビット：
0 = アラームOFF
1 = アラームON
予約ビットは常に0（OFF）にセットされます。

20. 体積補正係数計算エラーステータス
この値は読み出しのみ可能です。体積補正係数の実行エラーがない場合は値はゼロで、エラーが発生した場合は値はゼロ以外のコードで次のいずれかとなります。
1 = 6Aまたは6B VCF計算に無効なAPI値または温度入力値です。
2 = 6A VCF計算に無効なAPI値または温度入力範囲です。
3 = 6B VCF計算に無効なAPI値または温度入力範囲です。
4 = 6C VCF計算に無効なAPI値または温度入力範囲です。
5 = 6C VCF計算に無効なAPI値または温度入力範囲です。
6 = 6CワイドVCF計算に無効なAPI値または温度入力範囲です。
7 = 6C VCF計算に無効なデルタ温度です。
8 = 内挿エラー、レベル値がテーブル内で見つかりません。
9 = VCFの計算方法が無効または未選択です。

21. 体積計算エラーステータス
この値は読み出しのみ可能です。体積計算の実行エラーがない場合は値はゼロで、エラーが発生した場合は値はゼロ以外のコードで次のいずれかとなります。
1 = 負のテーブルエントリは許可されません。
2 = 負のテーブルエントリは許可されません。
3 = 負のテーブルエントリは許可されません。
4 = 負のテーブルエントリは許可されません。

22. レジスタマップ内で未定義または予約済みのレジスタは、負の最大値（8000H、またはレジスタペアの場合は80000000H）を返します。レジスタマップ（35198以上）以外のレジスタを読み出そうとした場合は、Modbus例外エラーコード02（不正データ）が返されます。
23. 温度の単位
温度の単位の値は、次のいずれかのコードになります。
0 = 摂氏
1 = 華氏

24. 密度の単位上位
密度の単位の値は、次のいずれかのコードになります。
0 = グラム/ミリリットル
1 = グラム/リットル
2 = キログラム/立方メートル
3 = キログラム/リットル
4 = ポンド/立方インチ
5 = ポンド/リットル
6 = ポンド/立方フィート
7 = トン/立方メートル
8 = トン/立方ヤード

25. 体積の単位
体積の単位の値は、次のいずれかのコードになります。
0 = リットル
1 = 立方ミリメートル
2 = 立方メートル
3 = 立方インチ
4 = 立方フィート
5 = ガロン
6 = バレル

26. 長さの単位
長さの単位の値は、次のいずれかのコードになります。
0 = ミリメートル
1 = センチメートル
2 = メートル
3 = キロメートル
4 = インチ
5 = フィート
6 = ヤード

27. 質量の単位
質量の単位の値は、次のいずれかのコードになります。
0 = キログラム
1 = グラム
2 = オンス
3 = ポンド
4 = トン（Ton）
5 = トネル（Tonnie）

28. 新しいデバイスアドレスを設定
このレジスタは新しいデバイスアドレスを設定します。Modbusで有効な値は1〜247です。

29. アラームの単位
有効値は次のとおりです。
2 = 体積の単位の種類
3 = 長さの単位の種類

30. 高境界面アラーム
境界面がこれ以上になることが許容されない値です。現在のアラームの単位に値が設定されていることを確認してください。
（注意29を参照）

31. 低境界面アラーム
境界面がこれ以下になることが許容されない値です。
現在のアラームの単位に値が設定されていることを確認してください。
（注意29を参照）

32. 高液面アラーム
液面がこれ以上になることが許容されない値です。
現在のアラームの単位に値が設定されていることを確認してください。
（注意29を参照）

33. 低液面アラーム
液面がこれ以下になることが許容されない値です。
現在のアラームの単位に値が設定されていることを確認してください。
（注意29を参照）

34. リミット高位アラーム
リミットがこれ以上になることが許容されない値です。
この値に設定できる単位タイプはLength [長さ]のみです。
（注意29を参照）

35. リミット低位アラーム
リミットがこれ以下になることが許容されない値です。
この値に設定できる単位タイプはLength [長さ]のみです。
（注意29を参照）

36. 高平均温度アラーム
平均温度がこれ以上になることが許容されない値です。

37. 低平均温度アラーム
平均温度がこれ以下になることが許容されない値です。

9.12 体積計算に使用する公式
1. GOVP = GOVT - GOVI
 （2フロートシステム）
2. GOVP = GOVT
 （1フロートシステム）
3. GOVT = GOVP + GOVI
 （2フロートシステム）
4. GOVT = GOVP
 （1フロートシステム）
5. GOVU = 稼働容量 - GOVT
 （1フロートまたは2フロートシステム）

液体容量（GOVP）は、タンク内の総容量（GOVT）から境界面下の液体容量（GOVI）を差し引いた量です。GOVTは液面フロート（トランスミッターのフランジに最も近いフロート）によって測定され、GOVIは境界面フロート（トランスミッターの先端に最も近いフロート）によって測定されます。トランスミッターからのレベル情報はストラップテーブルと併せて対応する容量の計算に使用されます。

2. NSVP = GOVP x VCF
 正味標準液体容量（NSVP）は、液体容量（GOVP）に体積補正係数（VCF）を乗じて得た量に等しくなります。VCFは、（ユーザーによって設定された）液体の熱膨張特性およびゲージからの温度情報に基づいて算出されます。（詳細は、4. 体積補正係数を参照）
3. **MASS = NSVP x 密度**
液体の質量（MASS）は、正味標準液体容量（NSVP）にユーザーが設定した液体の密度（DENSITY）を乗じて得た値に等しくなります。

4. **体積補正係数**

\[VCF = \exp\left(-A(T) \times (t-T) \times \left[1 + (0.8 \times A(T) \times (t-T)) \right] \right) \]

ここで、
- \(t \) は任意の温度
- \(T \) は基準温度（華氏60度）
- \(A(T) \) は基準温度Tにおける熱膨張係数

ここで、
- EXPは指数関数（eX）です。

基準温度における熱膨張係数は、基準温度Tにおける液体の密度と以下の関係があります。

\[A(T) = \frac{K0 + K1 \times DEN(T)}{DEN(T) \times DEN(T)} \]

ここで、
- 密度はKG/M3の単位で定義されます。
- K0およびK1は各液体に関連する定数です。

API2540の記述によると、温度データを最も近い小数第1位（0.1の位）の温度に丸めます。

以下に、体積補正係数、およびAPI（密度）と温度データの有効範囲を計算するためにソフトウェアで使用されるすべての定数を記載します。

<table>
<thead>
<tr>
<th>定数</th>
<th>K0 = 341.0952</th>
<th>K1 = 0.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>有効温度範囲</th>
<th>有効比重範囲（API）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜+300.0°F</td>
<td>0〜40.0 *API</td>
</tr>
<tr>
<td>0〜+250.0°F</td>
<td>40.1〜50.0 *API</td>
</tr>
<tr>
<td>0〜+200.0°F</td>
<td>50.1〜100.0 *API</td>
</tr>
</tbody>
</table>

表1: 6A重油

<table>
<thead>
<tr>
<th>製品タイプ</th>
<th>定数</th>
<th>有効比重範囲（API）</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃料油</td>
<td>K0 = 103.8720</td>
<td>0.0〜37.0 *API</td>
</tr>
<tr>
<td></td>
<td>K1 = 0.2701</td>
<td></td>
</tr>
<tr>
<td>ジェットグループ</td>
<td>K0 = 330.3010</td>
<td>37.1〜47.9 *API</td>
</tr>
<tr>
<td></td>
<td>K1 = 0.0</td>
<td></td>
</tr>
<tr>
<td>移行グループ</td>
<td>K0 = 1489.0670</td>
<td>48.0〜52.0 *API</td>
</tr>
<tr>
<td></td>
<td>K1 = -0.0018684</td>
<td></td>
</tr>
<tr>
<td>ガソリン</td>
<td>K0 = 192.4571</td>
<td>52.1〜85.0 *API</td>
</tr>
<tr>
<td></td>
<td>K1 = 0.2438</td>
<td></td>
</tr>
</tbody>
</table>

表2: 6B軽油

<table>
<thead>
<tr>
<th>有効温度範囲</th>
<th>有効TEC範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜+300.0°F</td>
<td>270.0〜510.0 *10E-6/ °F</td>
</tr>
<tr>
<td>0〜+250.0°F</td>
<td>510.5〜530.0 *10E-6/ °F</td>
</tr>
<tr>
<td>0〜+200.0°F</td>
<td>530.5〜930.0 *10E-6/ °F</td>
</tr>
</tbody>
</table>

* 移行グループの場合、A(T) = [K1 + K0 (DEN(T) x DEN(T))]
** TECは計測対象製品の熱膨張係数

表4: 6C化学品

<table>
<thead>
<tr>
<th>有効温度範囲</th>
<th>有効TEC範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td>0〜+300.0°F</td>
<td>100.0〜999.0 *10E-6/ °F</td>
</tr>
</tbody>
</table>

* 移行グループの場合、A(T) = [K1 + K0 (DEN(T) x DEN(T))]を計測

表5: 6C MOD

注意:
体積計測モード6C MODおよびCUST TABは、厳密にはAPI規格2540に準拠しないため、保管転送用途を目的としておりません。6C MOD向けのソフトウェアには可動温度参照機能が組み込まれており、より幅広い範囲のTEC値に対応することができました。
Temposonics, LLC
Americas & APAC Region
3001 Sheldon Drive
Cary, N.C. 27513
Phone: +1 919 677-0100
E-mail: info.us@temposonics.com

Temposonics GmbH & Co. KG
EMEA Region & India
Auf dem Schüffel 9
58513 Lüdenscheid
Phone: +49 2351 9587-0
E-mail: info.de@temposonics.com

Branch Office
Phone: +39 030 988 3819
E-mail: info.it@temposonics.com

Branch Office
Phone: +33 6 14 060 728
E-mail: info.fr@temposonics.com

Branch Office
Phone: +44 79 44 15 03 00
E-mail: info.uk@temposonics.com

Branch Office
Phone: +46 70 29 91 281
E-mail: info.sca@temposonics.com

Branch Office
Phone: +86 21 2415 1000 / 2415 1001
E-mail: info.cn@temposonics.com

Branch Office
Phone: +81 3 6416 1063
E-mail: info.jp@temposonics.com

temposonics.com

© 2022 Temposonics, LLC – all rights reserved. Temposonics, LLC and Temposonics GmbH & Co. KG are subsidiaries of Amphenol Corporation. Except for any third party marks for which attribution is provided herein, the company names and product names used in this document may be the registered trademarks or unregistered trademarks of Temposonics, LLC or Temposonics GmbH & Co. KG. Detailed trademark ownership information is available at www.temposonics.com/trademarkownership.