Data Sheet

R-Series V RDV SSI
Magnetostrictive Linear Position Sensors

- Space-saving installation due to detached sensor electronics housing
- Backwards compatible with RD4 generation
- All advantages of the R-Series V
MEASURING TECHNOLOGY

The absolute, linear position sensors provided by Temposonics rely on the company’s proprietary magnetostrictive technology, which can determine position with a high level of precision and robustness. Each Temposonics® position sensor consists of a ferromagnetic waveguide, a position magnet, a strain pulse converter and a supporting electronics. The magnet, connected to the object in motion in the application, generates a magnetic field at its location on the waveguide. A short current pulse is applied to the waveguide. This creates a momentary radial magnetic field and torsional strain on the waveguide. The momentary interaction of the magnetic fields releases a torsional strain pulse that propagates the length of the waveguide. When the ultrasonic wave reaches the beginning of the waveguide it is converted into an electrical signal. Since the speed of the ultrasonic wave in the waveguide is precisely known, the time required to receive the return signal can be converted into a linear position measurement with both high accuracy and repeatability.

R-SERIES V RDV SSI

The Temposonics® R-Series V brings very powerful sensor performance to meet the many demands of your application. The sensor RDV is the version of the R-Series V with a detached sensor electronics. The main advantages of the version RDV are:

- **Space-saving installation**
 The detached sensor electronics allow space-saving installation of the compact measuring rod.

- **R-Series V platform**
 The detached sensor electronics is based on the R-Series V and offers all advantages of the innovative series.

- **Backwards compatible**
 Mechanically and electrically, the sensors are backwards compatible with the RD4. This means that the sensor rod or the sensor electronics can be replaced without any problems.

- **Protection of the sensor electronics**
 By separating the robust sensor rod from the complex evaluation electronics improved protection against process influences can be realized.

In addition the R-Series V SSI scores with the following features:

- **Differential measurement between 2 positions**
 The R-Series V SSI can measure and output the distance between 2 position magnets.

- **SSI**
 The interface of the R-Series V SSI corresponds to the SSI industry standard for absolute encoders. You can select the configuration of the SSI signal that fits best to your application and also adjust it on site with the smart assistants.

All settings under control with the smart assistants for the R-Series V

The TempoLink® and the TempoGate® smart assistants support you in setup and diagnostics of the R-Series V. For more information of these assistants please see the data sheets:

- TempoLink® smart assistant
 (Document part number: 552070)
- TempoGate® smart assistant
 (Document part number: 552110)
TECHNICAL DATA

Output

Interface
SSI (Synchronous Serial Interface) – differential signal in SSI standard (RS-485/RS-422)

Data format
Binary or gray

Data length
8…32 Bit

Data transmission rate
70 kBaud¹…1 MBaud, depending on cable length:

<table>
<thead>
<tr>
<th>Cable length</th>
<th>< 3 m</th>
<th>< 50 m</th>
<th>< 100 m</th>
<th>< 200 m</th>
<th>< 400 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>1 MBd</td>
<td>< 400 kBD</td>
<td>< 300 kBD</td>
<td>< 200 kBD</td>
<td>< 100 kBD</td>
</tr>
</tbody>
</table>

Measured value
Position or velocity, position and temperature in the sensor electronics housing

Measurement parameters

<table>
<thead>
<tr>
<th>Resolution: Position</th>
<th>0.1…100 µm (0.0001…0.1 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution: Velocity</td>
<td>0.001 mm/s (determined over 10 measured values)</td>
</tr>
</tbody>
</table>

Update rate²

<table>
<thead>
<tr>
<th>Stroke length</th>
<th>25 mm</th>
<th>300 mm</th>
<th>750 mm</th>
<th>1000 mm</th>
<th>2000 mm</th>
<th>5080 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update rate</td>
<td>10 kHz</td>
<td>3.4 kHz</td>
<td>2.7 kHz</td>
<td>2.1 kHz</td>
<td>1.2 kHz</td>
<td>0.5 kHz</td>
</tr>
</tbody>
</table>

Linearity deviation³,⁴

<table>
<thead>
<tr>
<th>Stroke length</th>
<th>≤ 400 mm</th>
<th>> 400 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity deviation</td>
<td>≤ ±40 µm</td>
<td>< ±0.01 % F.S.</td>
</tr>
</tbody>
</table>

Optional internal linearization: Linearity tolerance (applies for the first magnet for differential measurement)

<table>
<thead>
<tr>
<th>Stroke length</th>
<th>25…300 mm</th>
<th>300…600 mm</th>
<th>600…1200 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>typical</td>
<td>± 15 µm</td>
<td>± 20 µm</td>
<td>± 25 µm</td>
</tr>
<tr>
<td>maximum</td>
<td>± 25 µm</td>
<td>± 30 µm</td>
<td>± 50 µm</td>
</tr>
</tbody>
</table>

Repeatability
< ±0.001 % F.S. (minimum ±2.5 µm) typical

Hysteresis
< 4 µm typical

Temperature coefficient
< 15 ppm/K typical

Operating conditions

Operating temperature
−40…+85 °C (−40…+185 °F)

Humidity
90 % relative humidity, no condensation

Ingress protection
Sensor electronics: IP67 (with correctly mounted housing and connectors)
Measuring rod with connecting cable for side cable entry: IP65
Measuring rod with single wires and flat connector with bottom cable entry: IP30

Shock test
100 g/11 ms, IEC standard 60068-2-27

Vibration test
10 g/10…2000 Hz, IEC standard 60068-2-6 (excluding resonant frequencies)

EMC test
Electromagnetic emission according to EN 61000-6-3
Electromagnetic immunity according to EN 61000-6-2
The RDV sensors fulfill the requirements of the EMC directives 2014/30/EU, UKSI 2016 No. 1091 and TR CU 020/2011 under the condition of an EMC compliant installation⁵

Operating pressure
350 bar (5076 psi)/700 bar (10,153 psi) peak (at 10 × 1 min) for sensor rod

Magnet movement velocity
Any

Design/Material

Sensor electronics housing
Aluminum (painted), zinc die cast

Sensor rod with flange
Stainless steel 1.4301 (AISI 304)

RoHS compliance
The used materials are compliant with the requirements of EU Directive 2011/65/EU and EU Regulation 2015/863 as well as UKSI 2022 No. 622

Stroke length
25…2540 mm (1…100 in.) for pressure-fit flange »S«
25…5080 mm (1…200 in.) for all threaded flanges

Technical data “Mechanical mounting” and “Electrical connection” on page 4

1/ With standard one shot of 16 µs
2/ Sensor with standard settings. Further information can be found in the operation manual R-Series V SSI (document part number: 552011)
3/ With position magnet # 251 416-2
4/ For rod style »S« the linearity deviation can be higher in the first 30 mm (1.2 in.) of stroke length
5/ The cable between the sensor element and the sensor electronics housing must be mounted in an appropriately shielded environment
Mechanical mounting

<table>
<thead>
<tr>
<th>Mounting position</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting instruction</td>
<td>Please consult the technical drawings on page 5, page 6, page 7, page 8 and the operation manual (document part number: 552011)</td>
</tr>
</tbody>
</table>

Electrical connection

<table>
<thead>
<tr>
<th>Connection type</th>
<th>1 × M16 male connector (7 pin) or 1 × M12 male connector (8 pin) or cable outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>+12…30 VDC ±20 % (9.6…36 VDC)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>1.2 W typical</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>500 VDC (DC ground to machine ground)</td>
</tr>
<tr>
<td>Polarity protection</td>
<td>Up to -36 VDC</td>
</tr>
<tr>
<td>Overvoltage protection</td>
<td>Up to 36 VDC</td>
</tr>
</tbody>
</table>
TECHNICAL DRAWING

RDV with bottom cable entry

- The connecting cables between the sensor electronics housing and the rod are routed into the interior via the bottom of the sensor electronics housing.
- Rod and connecting cable are fully encapsulated and protected against external disturbances.

RDV with bottom cable entry, example: BXX/EXX/GXX/LXX/UXX (angled cable outlet)

Controlling design dimensions are in millimeters and measurements in () are in inches.

Fig. 2: Temposonics® RDV sensor electronics housing with bottom cable entry.
TECHNICAL DRAWING

RDV with side connection

- The connecting cable between the sensor electronics housing and the rod is connected to the side of the sensor electronics housing
- Rod and connecting cable are sealed against dust and protected against water jets

RDV with side cable entry, example: Connector D70 (connector outlet)

Controlling design dimensions are in millimeters and measurements in () are in inches

Fig. 3: Temposonics® RDV sensor electronics housing with side cable entry
RDV with side cable entry, example: Connector D84 (connector outlet)

RDV with side cable entry, example: HXX/PXX/RXX (straight cable outlet)

RDV with side cable entry, example: TXX (straight cable outlet)

Controlling design dimensions are in millimeters and measurements in () are in inches

Fig. 4: Temposonics® RDV sensor electronics housing with different outlet options
Temposonics® R-Series V RDV SSI

Data Sheet

Threaded flange »C« & »D« (for bottom or side cable entry)

- **PUR cable:** Ø 6 (Ø 0.24)
- **Bending radius:** > 24 (> 0.94)
- **Cable length (bottom cable entry):** 65/170/230/350 (2.6/6.7/9.1/13.8)
- **Cable length (side cable entry):** 250/400/600 (9.8/15.7/23.6)

- **Null zone:** 32 (1.26)
- **Stroke length:** 25…5080 (1…200)
- **Dead zone:** 63.5/66* (2.5/2.6)

- **Threaded flange »C«:** M18×1.5-6g
- **Threaded flange »D«:** ¾"-16 UNF-3A

* Stroke length > 5000 mm (196.9 in.)

Threaded flange »M« (for bottom or side cable entry)

- **PUR cable:** Ø 6 (Ø 0.24)
- **Bending radius:** > 24 (> 0.94)
- **Cable length (bottom cable entry):** 65/170/230/350 (2.6/6.7/9.1/13.8)
- **Cable length (side cable entry):** 250/400/600 (9.8/15.7/23.6)

- **Null zone:** 32 (1.26)
- **Stroke length:** 25…3080 (1…200)
- **Dead zone:** 63.5/66* (2.5/2.6)

- **Threaded flange »M«:** M18×1.5-6g

* Stroke length > 5000 mm (196.9 in.)

Threaded flange »T« (for bottom or side cable entry)

- **PUR cable:** Ø 6 (Ø 0.24)
- **Bending radius:** > 24 (> 0.94)
- **Cable length (bottom cable entry):** 65/170/230/350 (2.6/6.7/9.1/13.8)
- **Cable length (side cable entry):** 250/400/600 (9.8/15.7/23.6)

- **Null zone:** 32 (1.26)
- **Stroke length:** 25…2540 (1…100)
- **Dead zone:** 63.5/66* (2.5/2.6)

- **Threaded flange »T«:** ¾"-16 UNF-3A

* Stroke length > 5000 mm (196.9 in.)

Pressure fit flange »S« (for bottom or side cable entry)

- **PUR cable:** Ø 6 (Ø 0.24)
- **Bending radius:** > 24 (> 0.94)
- **Cable length (bottom cable entry):** 65/170/230/350 (2.6/6.7/9.1/13.8)
- **Cable length (side cable entry):** 250/400/600 (9.8/15.7/23.6)

- **Null zone:** 32 (1.26)
- **Stroke length:** 25…2540 (1…100)
- **Dead zone:** 63.5 (2.5)

* Stroke length > 5000 mm (196.9 in.)

Controlling design dimensions are in millimeters and measurements in () are in inches

Fig. 5: Temposonics® RDV flanges
CONNECTOR WIRING

D70

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data (−)</td>
</tr>
<tr>
<td>2</td>
<td>Data (+)</td>
</tr>
<tr>
<td>3</td>
<td>Clock (+)</td>
</tr>
<tr>
<td>4</td>
<td>Clock (−)</td>
</tr>
<tr>
<td>5</td>
<td>+12…30 VDC (±20 %)</td>
</tr>
<tr>
<td>6</td>
<td>DC Ground (0 V)</td>
</tr>
<tr>
<td>7</td>
<td>Not connected</td>
</tr>
</tbody>
</table>

Signal + power supply

M16 male connector

![View on sensor](image)

Fig. 6: Connector wiring D70

D84

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clock (+)</td>
</tr>
<tr>
<td>2</td>
<td>Clock (−)</td>
</tr>
<tr>
<td>3</td>
<td>Data (+)</td>
</tr>
<tr>
<td>4</td>
<td>Data (−)</td>
</tr>
<tr>
<td>5</td>
<td>Not connected</td>
</tr>
<tr>
<td>6</td>
<td>Not connected</td>
</tr>
<tr>
<td>7</td>
<td>+12…30 VDC (±20 %)</td>
</tr>
<tr>
<td>8</td>
<td>DC Ground (0 V)</td>
</tr>
</tbody>
</table>

Signal + power supply

M12 male connector (A-coded)

![View on sensor](image)

Fig. 7: Connector wiring D84

HXX or LXX / PX X or BXX / RX X or EX X / TX X or GXX / UX X

<table>
<thead>
<tr>
<th>Cable Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>GY</td>
<td>Data (−)</td>
</tr>
<tr>
<td>PK</td>
<td>Data (+)</td>
</tr>
<tr>
<td>YE</td>
<td>Clock (+)</td>
</tr>
<tr>
<td>GN</td>
<td>Clock (−)</td>
</tr>
<tr>
<td>BN</td>
<td>+12…30 VDC (±20 %)</td>
</tr>
<tr>
<td>WH</td>
<td>DC Ground (0 V)</td>
</tr>
</tbody>
</table>

Signal + power supply

Cable type

Straight cable outlet

- **H X X** Part no. 530 052 PUR ➔ **L X X** Part no. 530 052
- **P X X** Part no. 530 175 PUR ➔ **B X X** Part no. 530 175
- **R X X** Part no. 530 032 PVC ➔ **E X X** Part no. 530 032
- **T X X** Part no. 530 112 FEP ➔ **G X X** Part no. 530 157

Angled cable outlet

Fig. 8: Connector wiring cable outlet

Fig. 9: Cable types assignment
Temposonics® R-Series V RDV SSI

Data Sheet

FREQUENTLY ORDERED ACCESSORIES

- Additional options available in our [Accessories Catalog](#).

Position magnets

<table>
<thead>
<tr>
<th>U-magnet OD33</th>
<th>Ring magnet OD33</th>
<th>Ring magnet OD25.4</th>
<th>Ring magnet OD17.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 251 416-2</td>
<td>Part no. 201 542-2</td>
<td>Part no. 400 533</td>
<td>Part no. 401 032</td>
</tr>
</tbody>
</table>

- **Material:** PA ferrite GF20
- **Weight:** Approx. 11 g
- **Surface pressure:** Max. 40 N/mm²
- **Fastening torque for M4 screws:** 1 Nm
- **Operating temperature:** −40…+105 °C (−40…+221 °F)

Marked version for sensors with internal linearization: Part no. 254 226

Magnet spacer

<table>
<thead>
<tr>
<th>Magnet spacer</th>
<th>O-rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 400 633</td>
<td>O-ring for threaded flange M18x1.5-6g Part no. 401 133</td>
</tr>
</tbody>
</table>

- **Material:** Aluminum
- **Weight:** Approx. 5 g
- **Surface pressure:** Max. 20 N/mm²
- **Fastening torque for M4 screws:** 1 Nm

O-rings

| O-ring for threaded flange ¾”-16 UNF-3A Part no. 560 705 |
| Back-up ring for pressure fit flange Ø 26.9 mm Part no. 560 629 |

- **Material:** Polymyte
- **Durometer:** 90 Shore A
- **Durometer:** 80± 5 Shore A
- **Operating temperature:** −15…+200 °C (5…+392 °F)

Mounting accessories

| O-ring for mounting block with bottom entry Part no. 561 435 | Hex jam nut M18x1.5-6g Part no. 500 018 |
| Hex jam nut ¾”-16 UNF-3A Part no. 500 015 |

- **Material:** FKM
- **Durometer:** 80± 5 Shore A
- **Operating temperature:** −15…+200 °C (5…+392 °F)

Controlling design dimensions are in millimeters and measurements in () are in inches.
Mounting accessories

| Part no. 561 481 |

Application: Used to secure sensor rods (Ø 10 mm (Ø 0.39 in.)) when using an U-magnet or block magnet
Material: Brass, non-magnetic

Controlling design dimensions are in millimeters and measurements in () are in inches
Cable connectors*

<table>
<thead>
<tr>
<th>M16 female connector (7 pin), straight</th>
<th>M16 female connector (7 pin), angled</th>
<th>M12 A-coded female connector (8 pin), straight</th>
<th>M12 A-coded female connector (8 pin), angled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 370 624</td>
<td>Part no. 370 779</td>
<td>Part no. 370 694</td>
<td>Part no. 370 699</td>
</tr>
<tr>
<td>Material: Zinc nickel plated</td>
<td>Material: Zinc nickel plated</td>
<td>Housing: GD-ZnAL</td>
<td>Housing: GD-ZnAL</td>
</tr>
<tr>
<td>Termination: Solder</td>
<td>Termination: Solder</td>
<td>Termination: Screw</td>
<td>Termination: Screw</td>
</tr>
<tr>
<td>Contact insert: Silver plated</td>
<td>Contact insert: Silver plated</td>
<td>Contact insert: CuZn</td>
<td>Contact insert: CuZn</td>
</tr>
<tr>
<td>Cable Ø: 6…8 mm (0.24…0.31 in.)</td>
<td>Cable Ø: 6…8 mm (0.24…0.31 in.)</td>
<td>Cable Ø: 4…9 mm (0.16…0.35 in.)</td>
<td>Cable Ø: 6…8 mm (0.24…0.31 in.)</td>
</tr>
<tr>
<td>Operating temperature: −40…+100 °C</td>
<td>Operating temperature: −40…+100 °C</td>
<td>Operating temperature: −25…+90 °C (−13…+194 °F)</td>
<td>Operating temperature: −25…+85 °C (−13…+185 °F)</td>
</tr>
<tr>
<td>(correctly fitted)</td>
<td>(correctly fitted)</td>
<td>Ingress protection: IP65/IP67 (correctly fitted)</td>
<td>Ingress protection: IP67 (correctly fitted)</td>
</tr>
<tr>
<td>Fastening torque: 0.7 Nm</td>
<td>Fastening torque: 0.7 Nm</td>
<td>Fastening torque: 0.6 Nm</td>
<td>Fastening torque: 0.6 Nm</td>
</tr>
</tbody>
</table>

Cables

<table>
<thead>
<tr>
<th>PVC cable</th>
<th>PUR cable</th>
<th>FEP cable</th>
<th>FEP cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part no. 530 032</td>
<td>Part no. 530 052</td>
<td>Part no. 530 112</td>
<td>Part no. 530 157</td>
</tr>
<tr>
<td>Material: PVC jacket; gray</td>
<td>Material: PUR jacket; orange</td>
<td>Material: FEP jacket; black</td>
<td>Material: FEP jacket; black</td>
</tr>
<tr>
<td>Features: Twisted pair, shielded, flexible</td>
<td>Features: Twisted pair, shielded, highly</td>
<td>Features: Twisted pair, shielded, flexible</td>
<td>Features: Twisted pair, shielded</td>
</tr>
<tr>
<td>Cable Ø: 6 mm (0.23 in.)</td>
<td>flexible, halogen free, suitable</td>
<td>high thermal resistance, mostly oil &</td>
<td>Cable Ø: 6.7 mm (0.26 in.)</td>
</tr>
<tr>
<td>Bending radius: 10 × D (fixed installation)</td>
<td>for drag chains, mostly oil & flame</td>
<td>acid resistant</td>
<td>Cross section: 3 × 2 × 0.25 mm²</td>
</tr>
<tr>
<td>Operating temperature: −40…+105 °C (−40…+221 °F)</td>
<td>resistant</td>
<td>Operating temperature: −40…+180 °C (−40…+356 °F)</td>
<td>Operating temperature: −40…+180 °C (−40…+356 °F)</td>
</tr>
</tbody>
</table>

* Follow the manufacturer’s mounting instructions.

Controlling design dimensions are in millimeters and measurements in () are in inches.

Color of connectors and cable jacket may change. Colors of the cores and technical properties remain unchanged.
Cables

<table>
<thead>
<tr>
<th>Cables</th>
<th>Cable sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUR cable
Part no. 530 175</td>
<td>Silicone cable
Part no. 530 176</td>
</tr>
<tr>
<td>Cable with M12 A-coded female connector (8 pin), straight – pigtail
Part no. 370 674</td>
<td>Cable with M12 A-coded female connector (8 pin), angled – pigtail
Part no. 370 676</td>
</tr>
</tbody>
</table>

Material: PUR jacket; orange
Features: Flexible, additional EMC protection
Cable Ø: 6.5 mm (0.26 in.)
Cross section: 6 × 0.14 mm²
Bending radius: 10 × D (fixed installation)
Operating temperature: −30…+90 °C (−22…+194 °F)
Material: Silicone jacket; black
Features: Twisted pair, shielded
Cable Ø: 6.3 mm (0.25 in.)
Cross section: 3 × 2 × 0.14 mm²
Bending radius: 7 × D (fixed installation)
Operating temperature: −50…+150 °C (−58…+302 °F)
Material: PUR jacket; black
Features: Shielded
Cable Ø: 6.5 mm (0.26 in.)
Cross section: 3 × 2 × 0.14 mm²
Bending radius: 10 × D (fixed installation)
Operating temperature: −25…+80 °C (−13…+176 °F)
Material: Silicone jacket; black
Features: Shielded
Cable Ø: 6.3 mm (0.25 in.)
Cross section: 3 × 2 × 0.14 mm²
Bending radius: 7 × D (fixed installation)
Operating temperature: −25…+80 °C (−13…+176 °F)
Ingress protection: IP67 (correctly fitted)
Cable length: 5 m (16.4 ft)
Color of connectors and cable jacket may change. Colors of the cores and technical properties remain unchanged.

Programming tools

TempoLink® kit for Temposonics® R-Series V
Part no. TL-1-0-SD70 (for D70)
Part no. TL-1-0-SD84 (for D84)
Part no. TL-1-0-AS00 (for cable outlet)
TempoGate® smart assistant for Temposonics® R-Series V
Part no. TG-C-0-Dxx
(xx indicates the number of R-Series V sensors that can be connected (even numbers only))

- Connect wirelessly via Wi-Fi enabled device or via USB with the diagnostic tool
- Simple connectivity to the sensor via 24 VDC power line (permissible cable length: 30 m)
- User friendly interface for mobile devices and desktop computers
- See data sheet “TempoLink® smart assistant” (document part no.: 552070) for further information
- OPC UA server for diagnostics of the R-Series V
- For installation in the control cabinet
- Connection via LAN and Wi-Fi
- See data sheet “TempoGate® smart assistant” document part no.: 552110) for further information

Color of connectors and cable jacket may change. Colors of the cores and technical properties remain unchanged.
ORDER CODE

<table>
<thead>
<tr>
<th>R</th>
<th>D</th>
<th>V</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Design

```text
R  Detached sensor electronics “Classic”
D
V
```

b Design

```text
C Threaded flange M18×1.5-6g (A/F 46)
D Threaded flange ½"-16 UNF-3A (A/F 46)
M Threaded flange M18×1.5-6g (A/F 24)
S Pressure fit flange Ø 26.9 mm f6
T Threaded flange ½"-16 UNF-3A (A/F 23)
```

c Mechanical options

For side cable entry

```text
A PUR cable with M16 connector, 250 mm length
B PUR cable with M16 connector, 400 mm length
C PUR cable with M16 connector, 600 mm length
```

For bottom cable entry

```text
2 Single wires with flat connector, 65 mm length
4 Single wires with flat connector, 170 mm length
5 Single wires with flat connector, 230 mm length
6 Single wires with flat connector, 350 mm length
```

d Stroke length

```text
X X X X X M
```

Flange »S«: 0025…2540 mm
Flange »C«, »Dx«, »M«, »T«: 0025…5080 mm

Stroke length (mm)

<table>
<thead>
<tr>
<th></th>
<th>Ordering steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>25… 500 mm</td>
<td>5 mm</td>
</tr>
<tr>
<td>500… 750 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>750…1000 mm</td>
<td>25 mm</td>
</tr>
<tr>
<td>1000…2500 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>2500…5080 mm</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

X X X X U

Flange »S«: 001.0…100.0 in.
Flange »C«, »Dx«, »M«, »T«: 001.0…200.0 in.

Stroke length (in.)

<table>
<thead>
<tr>
<th></th>
<th>Ordering steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1… 20 in.</td>
<td>0.2 in.</td>
</tr>
<tr>
<td>20… 30 in.</td>
<td>0.4 in.</td>
</tr>
<tr>
<td>30… 40 in.</td>
<td>1.0 in.</td>
</tr>
<tr>
<td>40…100 in.</td>
<td>2.0 in.</td>
</tr>
<tr>
<td>100…200 in.</td>
<td>4.0 in.</td>
</tr>
</tbody>
</table>

Non standard stroke lengths are available; must be encoded in 5 mm/0.1 in. increments

e Number of magnets

```text
X X 01…02 position(s) (1…2 magnet(s))
```

f Connection type

Connector

```text
D 7 0 M16 male connector (7 pin)
D 8 4 M12 male connector (8 pin)
```

Angled cable outlet

```text
B X X XX m/ft. PUR cable (part no. 530 175) B01…B30 (1…30 m/3…99 ft.)
(Note the temperature range of the cable!)
See “Frequently ordered accessories” for cable specifications
```

```text
E X X XX m/ft. PVC cable (part no. 530 032) E01…E30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications
```

```text
G X X XX m/ft. FEP cable (part no. 530 157) G01…G30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications
```

```text
L X X XX m/ft. PUR cable (part no. 530 052) L01…L30 (1…30 m/3…99 ft.)
(Note the temperature range of the cable!)
See “Frequently ordered accessories” for cable specifications
```

```text
U X X XX m/ft. Silicone cable (part no. 530 176) U01…U30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications
```

Straight cable outlet

```text
H X X XX m/ft. PUR cable (part no. 530 052) H01…H30 (1…30 m/3…99 ft.)
(Note the temperature range of the cable!)
See “Frequently ordered accessories” for cable specifications
```

```text
P X X XX m/ft. PUR cable (part no. 530 175) P01…P30 (1…30 m/3…99 ft.)
(Note the temperature range of the cable!)
See “Frequently ordered accessories” for cable specifications
```

```text
R X X XX m/ft. PVC cable (part no. 530 032) R01…R30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications
```

```text
T X X XX m/ft. FEP cable (part no. 530 112) T01…T30 (1…30 m/3…99 ft.)
See “Frequently ordered accessories” for cable specifications
```

Encode in meters if using metric stroke length.
Encode in feet if using US customary stroke length.
<table>
<thead>
<tr>
<th>g System</th>
<th>n Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Standard</td>
<td>1 5 µm</td>
</tr>
<tr>
<td></td>
<td>2 10 µm</td>
</tr>
<tr>
<td></td>
<td>3 50 µm</td>
</tr>
<tr>
<td></td>
<td>4 100 µm</td>
</tr>
<tr>
<td></td>
<td>5 20 µm</td>
</tr>
<tr>
<td></td>
<td>6 2 µm</td>
</tr>
<tr>
<td></td>
<td>7 0.1 µm*</td>
</tr>
<tr>
<td></td>
<td>8 1 µm</td>
</tr>
<tr>
<td></td>
<td>9 0.5 µm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h Output</th>
<th>o Additional options (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S SSI</td>
<td>S 0 0 2 FIR filter (2 measurements)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 4 FIR filter (4 measurements)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 8 FIR filter (8 measurements)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 A No filter, error counter (4 cycles)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 C No filter, error counter (8 cycles)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 D No filter, error counter (10 cycles)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 G FIR filter (8 measurements), error counter (10 cycles)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 J IIR filter (filter grade 4)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 K IIR filter (filter grade 8)</td>
</tr>
<tr>
<td></td>
<td>S 0 0 N IIR filter (filter grade 8), error counter (10 cycles)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Position</td>
</tr>
<tr>
<td>2 Differential measurement (2 magnets and 1 output)</td>
</tr>
<tr>
<td>3 Velocity</td>
</tr>
<tr>
<td>4 Position and temperature in the sensor electronics housing; NOTICE In this case, only option 2 “24 bit” can be selected under i “Data length”.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Standard</td>
</tr>
<tr>
<td>1 Internal linearization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Measuring direction forward, asynchronous mode</td>
</tr>
<tr>
<td>2 Measuring direction forward, synchronous mode 1</td>
</tr>
<tr>
<td>3 Measuring direction forward, synchronous mode 2</td>
</tr>
<tr>
<td>4 Measuring direction forward, synchronous mode 3</td>
</tr>
<tr>
<td>5 Measuring direction reverse, asynchronous mode</td>
</tr>
<tr>
<td>6 Measuring direction reverse, synchronous mode 1</td>
</tr>
<tr>
<td>7 Measuring direction reverse, synchronous mode 2</td>
</tr>
<tr>
<td>8 Measuring direction reverse, synchronous mode 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>l Data length*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 25 bit</td>
</tr>
<tr>
<td>2 24 bit</td>
</tr>
<tr>
<td>3 26 bit</td>
</tr>
<tr>
<td>A 24 bit + alarm bit + parity bit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Binary</td>
</tr>
<tr>
<td>G Gray</td>
</tr>
</tbody>
</table>

NOTICE

- Specify the number of magnets for your application and order the magnets separately.
- The number of magnets is limited by the stroke length. The minimum allowed distance between magnets (i.e. front face of one to the front face of the next one) is 75 mm (3 in.).
- Use magnets of the same type for differential measurement.
- If the option for internal linearization in **i** “Options” is chosen, select a suitable magnet.

DELIVERY

- **RDV-C/-D/-M/-T:** Sensor, O-ring
- **RDV-S:** Sensor, O-ring, back-up ring

Manuals, Software & 3D Models available at:
www.temposonics.com

/* The stroke length of the sensor influences the choice of resolution and data width. See glossary under “Resolution and data width depending on stroke length”
GLOSSARY

A

Alarm
The alarm bit is set by the sensor if the sensor detects more magnets (extra magnet) or less magnets (magnet status error) than configured.

Asynchronous mode
In asynchronous mode the position data is continuously updated inside the sensor as quickly as the sensor’s measurement cycle will allow, independent of the controller. The controller’s loop time will determine when the sensor’s most recent data is clocked out over the SSI interface. (→ Synchronous mode)

D

Differential measurement
For differential measurement, the distance between the two position magnets is output as a value.

E

Extrapolation
The native measurement cycle time of a sensor increases with the stroke length. With extrapolation, the sensor is able to report data faster than the native cycle time, independent of the stroke length of the sensor. Without extrapolation, if data is requested faster than the native cycle time, the last measured value is repeated.

F

FIR filter
The FIR filter (Finite Impulse Response) is used to smooth the measured position value before output. To determine the output value, only input values corresponding to the window (filter window size) are used for filter calculation. The output value is calculated from these input values in the form of a moving average value. (→ IIR Filter)

IIR filter
The IIR filter (Infinite Impulse Response) is used to smooth the measured position value before output. To determine the output value, the input values corresponding to the filter grade (filter window size) are used for the filter calculation. The previous values are also taken into account when calculating the output value. (→ FIR Filter)

Internal linearization
The internal linearization offers an improved linearity for an overall higher accuracy of the position measurement. The internal linearization is set for the sensor during production.

M

Measuring direction
When moving the position magnet, the position and velocity values increase in the measuring direction.
• Forward: Values increasing from sensor electronics housing to rod end/profile end
• Reverse: Values decreasing from sensor electronics housing to rod end/profile end

P

Parity
The parity bit is a check bit that is added to a bit string to detect transmission errors. There are even parity and odd parity. With even parity, the parity bit is set so that the total number of 1-bits in the bit string including the parity bit is even. In case of odd parity, the total number of 1-bits in the bit sequence including the parity bit is odd. Even parity is implemented in the R-Series V SSI.

R

Resolution and data width depending on stroke length
The stroke length of the sensor influences the choice of resolution and data width. The resolution (step size) and data width (number of steps) must be selected so that the stroke length is covered. For example, with a data width of 24 bit and a resolution of 0.5 µm for an RH5 sensor the maximum stroke length of 7620 mm can be represented. You can adjust the resolution and the data width of the R-Series V SSI via the TempoLink® and TempoGate® smart assistants.

S

Synchronous Serial Interface
SSI (Synchronous Serial Interface) is a digital interface where the data is transferred serially. The interface of R-Series V SSI corresponds to SSI industry standard for absolute encoders. Its displacement value is encoded in a 24/25/26 bit binary or gray format and transmitted as a differential signal in SSI standard (RS-485/RS-422).

Synchronous mode
In synchronous mode the measurement and output of the sensor is matched to the data request cycle of the controller. The synchronous mode minimizes the time delay between measurement and output. The synchronous mode is required for sophisticated motion control applications. (→ Asynchronous mode)
• Synchronous mode 1
 Using synchronous mode 1, the sensor determines the controller’s loop timing and when data is being requested. The sensor then determines when to start the next measurement cycle so that it will complete just in time to deliver the freshest data possible.
• Synchronous mode 2
 If new position data is required faster than the sensor’s measurement cycle time, synchronous mode 2 provides extrapolated data values, calculated on the fly. A measurement value will be calculated and output to the controller whenever the sensor has not yet completed the next measurement cycle.
• Synchronous mode 3
 Synchronous mode 3 provides an additional enhancement to the high speed update feature of synchronous mode 2. For this mode all measurements values which are output are calculated to fully compensate for the inherent lag time due to the sensor’s measurement cycle.

T

Temperature in the sensor electronics housing
The temperature in the sensor electronics housing is measured in °C. With this option, the transmitted data word has a length of 32 bits, with the highest 8 bits representing the temperature value, followed by 24 bits for the position value. The temperature value is coded in the same format as the position value.